The vulnerable coronary plaque is characterized by latent symptoms and potential risk of sudden rupture. The current major approach for vulnerable plaque assessment is invasive intra-coronary imaging and the effective non-invasive imaging modality for vulnerable plaque early detection is absent. Our previous longitudinal study has demonstrated that high risk plaque features detected by coronary CTA are independent predictors for acute cardiovascular events, which has been cited by Coronary Artery Disease - Reporting and Data System (CAD-RADS): An Expert Consensus Document of SCCT, ACR and ACC. However, the identification of those features are limited by visual analysis and individual experiences. The current proposal aims to comprehensively extract potential quantitative high risk plaque characteristics from coronary CTA by the artificial intelligence technology of the convolution neural network and therefore to establish accurate automatic vulnerable plaque identification system. Moreover, with the integration of accurate automatic vulnerable plaque identification methods and deep learning based CT hemodynamic analysis approach, a comprehensive and effective non-invasive risk stratification model for plaque rupture will be established. With the above functional and anatomical evaluation of vulnerable plaque by CTA based artificial intelligence technology, a key technique for non-invasive accurate detection and early prediction of coronary plaque rupture will be provided.
冠状动脉粥样硬化易损斑块具有症状隐匿性、破裂突发性的特点,一旦破裂将导致急性冠脉事件(ACS)。目前对易损斑块的识别主要是依据有创性冠脉腔内影像,尚缺乏精准的早期无创性影像评价手段。申请人及团队前期纵向研究提出基于冠状动脉CTA(CCTA)的易损斑块特征可独立预测ACS的发生,研究结果被纳入美国SCCT/ACR/ACC冠状动脉CAD-RADS报告专家共识。然而,这些易损斑块特征判读受到肉眼识别局限性和医生经验差异性的限制。本项目拟通过人工智能卷积神经网络技术对CCTA数据进行深度挖掘,自动提取易损斑块潜在的定量化特征信息,建立易损斑块高精度识别系统;在此基础上,将获得的CCTA易损斑块自动识别方法与基于深度学习的CT实时血流动力学分析技术相整合,创建更加高效、灵敏、精准的无创性斑块破裂风险预警模型,为未来冠状动脉斑块破裂的智能化无创精准检测和早期预警提供全面可靠的依据和关键性的技术手段。
本课题基于冠状动脉疾病高风险患者的无创识别的复杂性的问题,优化的冠状动脉斑块,狭窄,及冠周脂肪的自动识别,搭建了基于注意力机制的深度学习模型,建立ACS斑块多维度AI预警系统,授权发明专利2项同时整合影像组学方法,从冠状动脉CTA图像中提取高维度量化信息,并结合临床及流行病学资料,提高了冠心病患者的早期预警价值。已发表SCI检索论文11篇,EI检索会议论文1篇,授权发明专利2项。项目负责人入选国家高层次青年人才。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
基于深度学习的土壤近红外光谱定量分析模型研究
多目标深度神经网络模型及学习算法
基于深度集成学习的驾驶行为风险分析与车辆保险智能定价模型研究
组织因子在冠状动脉非斑块破裂血栓形成中的作用及调控