面向复杂工况的航空发动机气路失稳过程智能故障预测

基本信息
批准号:61803071
项目类别:青年科学基金项目
资助金额:23.00
负责人:张硕
学科分类:
依托单位:大连理工大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:秦海勤,任立坤,林平,孙涛,张耀涛,孙小鱼,李济邦
关键词:
时序分析故障诊断微小故障故障预测故障特征提取
结项摘要

For the domestic aero-engine in the complex working condition, the gas path abnormal fault often appears due to stalling and surge, which can serious threat to flight safety. Therefore, in this work, the intelligent prognosis and fault diagnosis of the gas path aerodynamic instability in aero-engine becomes essential to ensure safe operation of aero-engines and reduce maintenance costs. Firstly, the holographic dynamic characteristics of key performance parameters in aero-engine is extracted through deep learning algorithm. Moreover, the real-time prediction model of adaptive rolling window is established to determine the dynamic trend of each parameter in aero-engine aerodynamic instability developing process. Secondly, based on the artificial intelligence, the gas path aerodynamic instability fault diagnosis is carried out with transfer learning to identify the abnormal knowledge and the intelligent fault model. And the incremental update approach is applied to build the gas path abnormal condition knowledge database in aero-engine. Finally, the aero-engine gas line abnormal conditions intelligent fault prognosis software platform will be implemented on the test site prototype application demonstration in the cooperation institution, and it will provide the theoretical guild and the algorithm support for the domestic aero-engine gas path instability intelligent fault prognosis.

国产航空发动机在复杂工况运行中,会遇到失速、喘振等严重威胁飞行安全的气路异常故障。本项目将开展航空发动机气路失稳过程的智能故障预测研究,以保障发动机的安全运行和降低其维护成本。首先,引入自适应滚动窗口技术保证不同时空尺度下深度学习算法的实时性,并根据提取的失稳过程气路关键性能参数全息特征,预测航空发动机气动失稳过程中各参数的动态变化趋势。接着,通过将航空发动机气路失稳异常工况的故障诊断同迁移学习相结合,构建增量更新的气路失稳故障知识库,完成航空发动机气路失稳异常工况的知识迁移与智能推理研究。最后,将开发航空发动机气路失稳异常工况智能故障预测软件平台,并在合作单位利用实际现场试车数据进行应用验证,为我国航空发动机气路失稳过程的智能故障预测提供理论指导和算法支撑。

项目摘要

项目从国家重大需求的实际工程出发,研究航空发动机气路失稳异常工况的智能预测和故障诊断的实际问题。通过建立自适应滚动窗口的深度学习实时预测模型,确定气动失稳过程中关键性能参数的动态变化趋势。并将航空发动机气路失稳异常工况的预测与故障诊断同人工智能相结合,能根据不同发动机进行气路失稳异常工况特征的归纳、迁移和融合,并运用迁移学习对失速喘振等航空发动机气路失稳故障进行准确判断,构建航空发动机气路失稳异常工况自动增量更新知识库管理平台。项目的完成将有助于建立完善的航空发动机气路失稳异常工况智能故障预测算法,深入研究不同算法的优缺点与适用性,为实际工程试验中提供提理论指导和算法支持。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
3

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
4

基于LASSO-SVMR模型城市生活需水量的预测

基于LASSO-SVMR模型城市生活需水量的预测

DOI:10.19679/j.cnki.cjjsjj.2019.0538
发表时间:2019
5

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016

张硕的其他基金

批准号:11871465
批准年份:2018
资助金额:56.00
项目类别:面上项目
批准号:11471026
批准年份:2014
资助金额:60.00
项目类别:面上项目
批准号:61902018
批准年份:2019
资助金额:29.00
项目类别:青年科学基金项目
批准号:11005145
批准年份:2010
资助金额:24.00
项目类别:青年科学基金项目
批准号:51608349
批准年份:2016
资助金额:20.00
项目类别:青年科学基金项目
批准号:11504430
批准年份:2015
资助金额:20.00
项目类别:青年科学基金项目
批准号:U1232117
批准年份:2012
资助金额:68.00
项目类别:联合基金项目
批准号:11902252
批准年份:2019
资助金额:25.00
项目类别:青年科学基金项目
批准号:11101415
批准年份:2011
资助金额:22.00
项目类别:青年科学基金项目
批准号:11575280
批准年份:2015
资助金额:75.00
项目类别:面上项目
批准号:71601078
批准年份:2016
资助金额:16.80
项目类别:青年科学基金项目
批准号:61901294
批准年份:2019
资助金额:21.50
项目类别:青年科学基金项目

相似国自然基金

1

面向气路故障的多源数据驱动航空发动机剩余寿命智能预测方法研究

批准号:91960106
批准年份:2019
负责人:陈景龙
学科分类:E0503
资助金额:60.00
项目类别:重大研究计划
2

瞬态变工况下燃气轮机自适应气路故障预测诊断方法研究

批准号:51806135
批准年份:2018
负责人:应雨龙
学科分类:E0601
资助金额:27.00
项目类别:青年科学基金项目
3

基于深度生成对抗网络的小样本下航空发动机气路故障智能识别技术研究

批准号:U1933101
批准年份:2019
负责人:陈景龙
学科分类:F01
资助金额:36.00
项目类别:联合基金项目
4

航空发动机气路突变故障表征与稀疏诊断方法研究

批准号:51905540
批准年份:2019
负责人:胡宇
学科分类:E0503
资助金额:25.00
项目类别:青年科学基金项目