There is a growing demand for highly stretchable and sensitive strain sensors that are desired for several potential applications including smart prosthesis, personalized health-monitoring, robotics, and so forth. However, the development of strain sensors suffers from the following three critical issues: the dilemma of high stretchability and high sensitivity, the ambiguity of the working mechanism, as well as the lack of systematical study of the device durability and the corresponding performance degradation mechanism. In order to address these issues, we propose in this project to develop a laser direct writing technique to fabricate a new type of graphene-based strain sensors with high stretchability and high sensitivity. After the successful development of the new strain sensor, the working mechanism of the strain sensor will be clarified. At mean time, the durability of the strain sensor will be systematically studied and the micro-mechanism for the performance degradation of the device will be clearly illustrated. This project is an interdisciplinary program, covering mechanical engineering, material science, electronics, etc.. It is anticipated that we will make innovations in the design and fabrication of strain sensors as well as significant progress in their working mechanism investigation and durability analysis. All these accomplishments will lay a solid foundation to the development of smart prosthesis, personalized health-monitoring, robotics, etc..
发展兼具高灵敏度和高延展性(宽的应变测量范围)的新型应变传感器在智能假肢、生物医疗、机器人等领域意义重大且前景广阔。但新型应变传感器的发展仍面临如下共性基础问题,函待解决:器件灵敏度与延展性之间存在矛盾、传感工作原理不完善、器件耐久性及其性能衰减机制不清。围绕以上问题,本项目拟提出利用激光直写技术,实现高效制备基于石墨烯的高灵敏度和高延展性应变传感器;通过对新型传感器工作原理的研究,阐明其应变响应特性;系统研究石墨烯应变传感器的耐久性,揭示器件性能衰减的微观机制。本项目体现了力学、材料和电子学等多学科领域的交叉,可望在应变传感器的结构设计与制备、器件工作原理以及耐久性研究等方面取得原创性成果,为我国在智能假肢、生物医疗、机器人等新兴领域的发展提供支持。
兼具高灵敏度和高延展性的应变传感器在智能假肢、生物医疗、机器人等领域具有广阔的应用前景。但新型应变传感器的发展仍需解决器件高灵敏度与高延展性之间的矛盾,传感工作原理不完善,器件耐久性及其性能衰减机制不清等共性基础问题。围绕以上问题,本项目提出利用激光直写技术实现高效制备基于石墨烯的高性能应变传感器;通过对新型传感器工作原理的研究,阐明其应变响应特性;系统研究应变传感器的耐久性,揭示器件性能衰减的微观机制。项目取得的成果如下:(1)研发了一种激光直写工艺,实现了高性能能石墨烯应变传感器的制备。通过激光直写过程中的构性调控,进一步将该工艺应用于不同柔性基体,实现制备高灵敏度碳基应变传感器;(2)通过电阻抗谱和原位微观表征,阐明了传感器的工作原理为纳米材料的离断效应;(3)器件耐久性的研究发现,传感层表面微裂纹的产生和铜电极断裂是传感器器件性能衰减的主要原因之一。本项目体现了力学、材料和电子学等多学科领域的交叉,相关应变传感器有望应用于智能假肢、生物医疗、机器人等领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
卫生系统韧性研究概况及其展望
钢筋混凝土带翼缘剪力墙破坏机理研究
吉林四平、榆树台地电场与长春台地磁场、分量应变的变化分析
变可信度近似模型及其在复杂装备优化设计中的应用研究进展
Chitosan oligomers 用于改善蛋白质、肽类难吸收药物口服吸收及其吸收促进机制的研究
锆合金/石墨烯复合材料高耐蚀性能机理研究
基于协同界面的石墨烯基自修复可穿戴应变传感器的构建及其应用研究
石墨烯薄膜应变传感机理及其面向复杂曲面变形探测的应用研究
基于层数可控石墨烯的应变调控及其物性研究