Because of the nonlinear characteristics of transonic aerodynamic forces, it is a challenging task to study on the aeroservoelastic problems in transonic flight regimes. This project takes an elastic wing/store system with multiple control surfaces as a research subject and focus on the transonic aeroservoelastic analysis of a three-dimensional wing model. the main research work of this project can be summarized as follows: (1) Based on the theory of nonlinear system identification, a novel nonlinear reduced-order modeling approach is proposed for the three-dimensional, transonic aerodynamic systems described by the Navier-Stokes equations. (2) Transonic aeroservoelstic analysis of the wing/store system is implemented via the present nonlinear reduced-order model. Moreover, the influence mechanism of the present nonlinear reduced-order modeling approach in predcting the accuracy of the limit-cycle oscillations of the wing/store system is further investigated. (3) The effects of aerodynamic nonlinearity on the nonlinear behaviors of transonic aeroservoelastic systems are investigated, respectively. Moreover, a nonlinear mathmatical modeling approach for the multi-input/multi-output,transonic aeroservoelastic systems is built. (4) Because of the complexitiy of the transonic aeroservoelastic behaviors of the wing/store system, a multi-input/multi-ouput robust control system having high stability margin is synthesized to suppress the transonic flutter instability and limit-cycle oscillation of the wing/store system. This project is aim to deal with the problems of the efficient transonic aeroelastic analysis and aeroelastic active control of the wing/store system. The research achievements of this project will provide important theoretical foundation and technical reserves for designing the advanced control configuraed vehicles.
跨音速气动力的非线性特性,使得跨音速气动伺服弹性研究极具挑战性。本项目以多控制面机翼/外挂系统为研究对象,围绕三维机翼的跨音速气动伺服弹性问题开展研究。主要研究工作如下:(1)针对由Navier-Stokes方程描述的三维跨音速空气动力系统,采用非线性系统辨识理论,提出一种新的非线性模型降阶方法;(2)基于非线性降阶模型开展机翼/外挂系统的跨音速气动弹性分析,并研究影响非线性降阶模型预测极限环振荡精度的机理;(3)研究前后缘控制面偏转引起的气动力非线性对跨音速气动伺服弹性系统的影响并建立多输入/多输出、非线性气动伺服弹性模型;(4)针对机翼/外挂系统跨音速气动伺服弹性行为的复杂性,设计具有高稳定性裕度的多输入/多输出鲁棒控制系统,抑制跨音速颤振失稳和极限环振荡。本项目旨在解决机翼/外挂系统的高效跨音速气动弹性分析和气动弹性主动控制问题,为先进随控布局飞机设计提供重要理论基础和关键技术储备。
跨音速气动力的非线性特性,使得跨音速气动伺服弹性研究极具挑战性。本项目以多控制面机翼/外挂系统为研究对象,围绕三维机翼的跨音速气动伺服弹性问题开展研究。主要研究工作如下:(1)针对由Navier-Stokes方程描述的三维跨音速空气动力系统,采用多个Wiener模型并联的非线性降阶模型方法和Levenberg-Marquadt优化算法,得到低阶的、非线性空气动力降阶模型;(2)基于得到的非线性空气动力降阶模型,开展机翼/外挂系统的跨音速颤振和极限环振荡分析,并与直接CFD-CSD耦合的高仿真计算结果进行对比,验证降阶模型精度及可靠性;(3)基于非线性降阶模型建立机翼/外挂系统的非线性气动伺服弹性数学模型,并对气动伺服弹性系统的频率响应特性进行研究。采用简谐慢扫频方法,控制面偏转激励下的非线性气动伺服弹性系统的频响特性。(4)该部分的研究内容分为三个方面:(a)基于线性化的跨音速小扰动空气动力模型ZTRAN,建立机翼/外挂系统的线性气动伺服弹性状态方程。基于该状态方程,采用无约束优化技术和回路传输恢复技术(LTR:Loop Transfer Recovery),设计前后缘控制面联合作动的、多输入/多输出气动弹性主动控制系统。采用基于系统回差矩阵的最小奇异值方法对控制系统的鲁棒稳定性裕度进行分析;(b)基于研究内容(3)所开发的非线性气动伺服弹性降阶模型,验证控制器在抑制机翼/外挂系统跨音速颤振失稳方面的有效性。给出开环和闭环颤振动压随马赫数变化的对比结果。(c)基于研究内容(3)所开发的非线性气动伺服弹性降阶模型,验证控制律在抑制机翼/外挂系统极限环振荡方面的有效性。本项目旨在解决机翼/外挂系统的高效跨音速气动弹性分析和气动弹性主动控制问题,为先进随控布局飞机设计提供重要理论基础和关键技术储备。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
中国参与全球价值链的环境效应分析
卫生系统韧性研究概况及其展望
可变形机翼变形过程失速气动载荷理论及气动弹性分析方法研究
具有分布式推进系统的大展弦比大柔性机翼气动弹性机理研究
可折叠式机翼非线性颤振与时变系统气动弹性响应研究
数字式气动伺服控制系统的研究