Cable cranes are characterized as complex working behavior and fast movement. It often occurs horizontal swinging and vertical vibrating of the lifting hook because of the cables’ flexibility in operation. Owing to intensive machinery, workers and many cross-operations on high arch dam construction site, the collision risk of entities is high. And the operation platform of cable cranes is far from concreting surface, so that the operators cannot intuitively obtain obstacle information for the movement of cable cranes. Therefore, it is necessary to profoundly analyze the operating characteristics of cable cranes and motion status of construction entities, as to plan safely operating path of cable cranes online and realize their intelligent control. .To solve this problem, some research methods (e.g. model test, data mining, intelligent control) are employed. Firstly, perception of operating status and site information of construction entities is conducted, then their motion path equations and motion prediction model are established. Secondly, clustering and sub-domain analysis for operating status of cable cranes are implemented, and the method of collision risk boundary analysis of cable cranes is proposed. Thirdly, equations of motion and dynamics for the lifting hook are established in considering with random effects of the wind and other factors, then the target point at the next moment is intelligently searched based on collision risk acceptability. Moreover, transition nodes are backstepped and a smooth path of obstacle avoidance is planned online. Finally, the self-adaptive mechanism is built based on gradient variance and contingency response. Then a forward operating flow is produced based on a motion and dynamic operating response model of cable cranes, and a feedback operating flow is produced based on realtime perception of actual operating status, which could realize the intelligent control for operation of cable cranes. Research results can offer a theoretical basis and a solution for safely operating of cable cranes in high arch dam construction.
缆机工作性态复杂、运动速度快,缆索和缆绳的柔性使吊钩在运行中易产生水平摆动和上下振动;高拱坝施工仓面机械和人员密集、交叉作业多,碰撞风险高;且缆机操作平台远离仓面,操作员无法直观获取仓面障碍物信息。因此,必须深入分析缆机运行特性与实体运动态势,实时规划缆机安全运行路径并实现智能调控。.本项目拟采用模型试验、数据挖掘和智能控制等方法,首先感知实体运行状态与场景信息,构建实体运动轨迹方程及运动预测模型;其次对缆机运行状态进行聚类和分域,提出碰撞风险边界分析方法;考虑大风等的随机影响构建吊钩运动-动力方程,基于碰撞风险可接受度智能搜索下一时刻目标点;反演过渡节点并实时规划平滑避障路径;最后,构建基于状态梯度变化和偶发事件响应的自适应机制;基于缆机运动-动力响应模型产生正向操作流,并实时感知实际运行状态产生反馈操作流,实现缆机运行智能调控。研究成果可为高拱坝施工缆机安全运行提供理论基础及解决方案。
缆机工作性态复杂、运动速度快,缆索和缆绳的柔性使吊钩在运行中易产生水平摆动和上下振动;高拱坝施工仓面机械和人员密集、交叉作业多,碰撞风险高;且缆机操作平台远离仓面,操作员无法直观获取仓面障碍物信息。因此,必须深入分析缆机运行特性与实体运动态势,实时规划缆机安全运行路径并实现智能调控。本项目针对高拱坝施工缆机安全运行路径实时规划与智能调控这一关键科学问题,提出缆机运行路径的实时规划方法和智能调控机制。.首先,针对高拱坝缆机运行特征,开展了缆机运行状态监测系统的构造设计,采用GPS-UWB混合的实时定位数据采集方法,对缆机运行过程实现高精度定位及数据采集,基于采集的数据建立了多源融合数据的分析处理,实现了缆机运行位置的实时采集。.其次,基于缆机系统各部件的结构特征,建立了缆机运行动力特征分析,对运行过程中系统各部件的状态进行了模拟分析;考虑大风因素对吊罐运行安全稳定的影响,开展了缆机吊罐风致摆动模型试验,确定了风速-吊罐摆动关系;基于吊罐运行空间特征,构造了缆机吊罐运行轨迹实时规划及调整模型,实现了调运过程中的避障及轨迹动态调整。.最后,考虑缆机运行本身及外力作用的摆动影响,对缆机运行中的安全空间开展了分析,基于试验及数值模拟结果建立了缆机运行不同工况下摆动效应;分析了缆机吊运过程中缆绳缆索的弹性变化过程;基于缆机吊罐摆动过程,建立了缆机运行防碰撞检测及安全预警机制;结合坝体浇筑过程,建立了坝体浇筑与缆机动态调度仿真分析模型,通过状态反馈机制,实现了坝体浇筑过程与缆机配置的联合优化;基于上述理论及方法建立了映射真实场景的缆机运行冲突与调整虚拟场景,通过与真实数据的联动,实现缆机调运的智能调控。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
基于LASSO-SVMR模型城市生活需水量的预测
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
面向云工作流安全的任务调度方法
高拱坝施工全过程动态仿真与实时控制研究
耦合振捣质量的高拱坝施工过程智能仿真研究
基于仓面时空状态演化的高拱坝施工效率与安全虚拟分析模型研究
基于实测资料的高拱坝施工运行过程真实应力演化规律及仿真模型研究