Wireless capsule endoscope (WCE) overcomes 2 main problems in traditional cabled endoscopy; it realizes the examination of the whole gastrointestinal (GI) tract, especially the small intestine, and brings about not so much pain during the test. It is a great breakthrough in endoscopy. However, there are some difficulties to be overcome to popularize WCE, and the accurate localization and the active motion actuation, as well as the better assistant diagnosis techniques, are among the key problems to be solved. In this project, we will study whole 6 dimensional position/orientation localization methods based on the radially magnetized tube (fixed on the outer side of the WCE) and axially magnetized tube/image integrated localization methods, to realize fast and reliable algorithm and real application tests. Also the system can simultaneously track the capsule inside the human body and the reference objectives outside the human body, and do the difference calculation to remove the interference of body motion on the localization; so as to build a foundation to design the 3D recovery graphs of the GI tract and the human mashing interface. These techniques will provide the physician with the accurate information of the WCE related position, orientation and motion parameters, which can further be used for the feedback actuation control of the WCE orientation and motion. On the WCE localization and 3D GI tract information, we can more accurately compute the size and location (or the depth in the GI tract) of the specific disease tissue to provide more solid data for determining the disease diagnosis and the further operation. Through the research, we will not only develop the high accuracy and real time algorithms and techniques for WCE clinical applications to make a contribution for a new great leap in popularizing the WCE, but also complete some novel intellectual property rights and academic achievements to have some significant impacts on the corresponding research areas.
无线胶囊内镜克服了传统缆线内镜的两大问题:难以实现完整小肠检查和给病人带来的痛苦;是该领域的一个重大突破。但其推广应用还要解决胶囊的精确定位和运动主动控制,和更完善的辅助诊断技术。本项目研究基于径向磁化圆磁套(置于胶囊外环)定位和磁套/图像综合定位两种全6维胶囊位姿定位新技术,完成快速可靠的定位算法并实验测试;能同时跟踪体内胶囊和体外参考目标的位姿参数,进行差分减除人体运动对定位的干扰。从而实施胃肠道三维重建和有效的人机界面,向医生准确反馈与内镜图像相对应的胶囊3D位置、3D姿态和运动参数;为实现进一步胶囊姿态和运动主动控制提供反馈参数信息。在此基础上,研究准确的病理组织尺寸及位置深度计算,为诊断提供可靠依据。通过本项目的研究,形成应用于胶囊内镜实际系统的高精度高实时性定位算法,改进现有胶囊内镜,为其推广新的飞跃做出贡献;同时产生多项具有自主知识产权的新成果,在国内外相关领域形成学术影响。
无线胶囊内镜克服了传统缆线内镜的两大问题:难以实现小肠和整个肠胃道的检查,以及给病人带来的痛苦;是内窥镜的一个重大突破。但其更广泛的应用还要解决胶囊的精确定位和主动运动控制问题,和更完善的诊断技术。本项目针对这些问题,开展了相关研究:1)定位算法改进,对线性定位算法的奇异性就行了研究;并利用随机复合形算法(RCA)和LM-PSO综合算法改善了非线性算法的性能。2)改进了磁定位系统,设计了穿戴式定位装置、处理电路、嵌入式数据采集、串行通信模块和后端PC机上的定位算法和实时程序。3)设计了新的传感器阵列标定方法,提升了系统的精度和实时性。4)研究了径向充磁圆环磁体的磁场模型,比较磁偶极子模型,并提出了圆环磁体6维位姿(3维位置和3维方向)定位方法。5)提出了基于单参考磁体(双磁体)和双参考磁体(三磁体)目标定位的人体运动干扰处理方法,降低了人体运动对目标定位的干扰。6)利用数学推导和实验考察了磁体的近远场特性,比对磁偶极子模型在近远场的分布,并提出了近场修正方法和近场定位算法。7)提出了二维查表法的胶囊内镜图像畸变校正;进而利用8点算法对胶囊内窥镜图像序列中的特征点进行三坐标计算;结合磁定位数据,完成胃肠道3D计算并利用OpenGL和MFC完成三维展示,及胃肠道组织的3D尺寸计测。8)研究了胶囊内窥镜运动轨迹的插值方法与曲线拟合,通过对运动轨迹曲线的积分计算,获取肠胃道病灶组织深度。9)研究了磁偶极子定位和图像定位的融合方法,实现了目标的高精度6维位姿定位方法。10)研究了基于电磁线圈的定位方法和系统,提出了新的算法软件,实现了交变电磁信号幅值的提取、饱和畸变下信号的正确提取、多频饱和畸变信号的恢复提取,并设计了相应的电磁定位系统硬件与电路,完成了定位系统。.通过本项目的研究,形成应用于胶囊内镜的高精度定位和三维计测算法,制作了样机系统。本项目发表论文35篇,其中SCI检索论文9篇,EI检索论文16篇,IEEE 刊物论文6篇;出版英文专著一本;授权和申请专利8项,中发明专利7项;培养硕士研究生9名,博士研究生1名;在国内外相关领域形成学术影响。
{{i.achievement_title}}
数据更新时间:2023-05-31
掘进工作面局部通风风筒悬挂位置的数值模拟
Combining Spectral Unmixing and 3D/2D Dense Networks with Early-Exiting Strategy for Hyperspectral Image Classification
Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary
基于LBS的移动定向优惠券策略
不同分子分型乳腺癌的多模态超声特征和临床病理对照研究
适应胃肠全域检查的主动胶囊机器人位姿控制
胶囊内窥镜天线的宽带小型化理论与技术研究
胃肠道胶囊内窥镜可穿戴供电系统动态磁耦合谐振无线电能传输理论与方法研究
基于模型检查的软件错误定位技术研究