The study of optical functionality on silicon-based materials, not only is a very challenging research topics in the field of solid luminescent materials, but also is a current need for high speed and large capacity of monolithic optoelectronic integration. After more than 20 years of effort, low-dimensional nanostructures of Silicon (nc-Si) materials show good photoluminescence (PL) feature in visible light regime and to start exploring optical gain characteristics of nc-Si materials. However has so far reported the gain coefficient g is very low. The reason for this is the free-carrier absorption in Silicon (αFCA) reduces the net gain of light, and also influenced by Auger non-radiative recombination under high pump condition. In this project, the main work is to study the characteristics of optical gain and light stimulated emission in SiNO materials based on our discovered new luminous energy State (N-Si-O), and to explore the possibilities of the optically pumped laser. Its physical reason: (1) compared with the nc-Si material under the same exciting conditions, SiNO PL intensity of material to be strong. (2) PL shows shorter wavelength (500nm~600nm). Consequently, the free-carrier absorption coefficient (αFCA~ λ2) is reduced. (3) Since (N-Si-O) luminescent energy state is in the band gap. It is a typical three-level structure, therefore, conducive to photo-carrier reversed. Based on this physical model, we observed optical gain phenomenon in the pre-research work. We believe that the objectives of project are achievable.
研究硅基材料的光学功能,不仅是固体发光材料研究领域中极具挑战性的课题,同时也是当前实现高速大容量单片光电集成的迫切需求。经二十多年来的努力,具有低维纳米结构的硅(nc-Si)材料在可见光波段已展示出很好的光致发光(PL)性能;并开始探索其光增益特性。然而至今报导的光增益系数还很低,原因是硅中的自由载流子吸收降低了光的净增益,受到Auger非辐射复合的限制。本项目的工作是在我们发现的硅氮氧(SiNO)薄膜中的新的发光能态(N-Si-O)的基础上,研究该类SiNO发光材料的光调控、光增益和光激射特性,探索光泵激光的可能性。其物理依据是:(1)在相同激发条件下与nc-Si材料相比,SiNO材料的PL强度要强。(2)PL波长较短,自由载流子吸收系数小 (3)(N-Si-O)发光能态位于带隙中,是典型的三能级结构,有利于光生载流子反转。我们在预研中已观察到光增益现象。预计本项目的研究目标是可实现的。
基于硅基单片光电集成的光通信是当前研究前沿。本项目针对硅基单片光电集成研究中最难解决的硅基光源关键技术,在我们已发现的硅氮氧 (SiNO) 薄膜中新的发光能态(N-Si-O) 的基础上,深入研究该类(SiNO)发光材料的发光机理,波长调控,发光效率和光增益等重要特性。.该项目取得的重要结果如下.1. 由电子顺磁共振(EPR)和X光电子谱(XPS)测量,结合PL和EPL与激发波长的关系,系统的研究了N-Si-O 缺陷态发光机制。结果发表在Appl. Phys. Letts., 106,23103(2015) 。.2. 采用光子积分球直接测量得到a-SiNO薄膜发光的外量子效率(PL-EQE),结合发光薄膜出射光模型的分析,计算出发光波长为470nm时60% 的内量子效率(PL-IQE), 这是当时国际上报导的硅基薄膜发光效率的最高值。结果已发表在Appl. Phys. Letts. ,105, 011113 (2014)。.3. 采用PL 温度谱(TD-PL)和PL的时间分辨谱(TR-PL)相结合的测量方法,研究a-SiNO薄膜中光生载流子的复合动力学过程。其光生载流子寿命约ns量级,辐射复合速率高达108 /s。结果已发表在Appl. Phys. Letts., 108, 111103 (2016)。.4. 获得了磷(P)掺杂的a-SiNO 薄膜的电导率约0.4 mS/cm, 电子霍尔迁移率1.0 cm2/V•s,制备了n-a-SiNO/p-c-Si异质结发光二级管(LED),其发光功率效率比本征a-SiNO/p-c-Si MIS结构LED提高了5倍。结果已发表在Appl. Phys. Letts., 110, 081109 (2017)。.5. 提出了a-SiNO薄膜中光生载流子产生,复合发光的三能级图像。制备了a-SiO2/a-SiNO 脊形光波导,采用 ‘变条长’的光增益测量方法,获得了光增益系数为102 cm-1。超过了国际上报导的nc-Si薄膜光增益系数(100cm-1)值。该结果已投稿。. 综上所述,该项目对a-SiNO薄膜材料的发光机理,发光效率和光增益特性进行了系统和深入的研究。取得一系列重要结果,在国际著名期刊Appl. Phys. Letts 上连续发表4篇论文,已全面完成了项目原定的研究内容,是一项有一定学术影响的科研成果。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
中国参与全球价值链的环境效应分析
硅量子点相干光激射的研究
三维限制微管谐振腔对硅纳米颗粒光增益的调制
光调制和光功能超薄膜的制备及研究
硅基ZnO薄膜发光器件的电抽运随机激射