As one kind of new materials, the particle reinforcement metal matrix composites are widely applied in the aeronautic and astronautic area, microelectronictechnology and so on. The residual stress seriously affects service life and function of aerospace key components in the manufacturing process of reinforced particles metal matrix composites. In order to solve key scientific problem, a new method of composite thermal and vibratory residual stress homogenization is presented. In this method, the high-frequency and cyclic vibration load is imposed on workpieces at a certain temperature. The global homogenization and located relaxation of residual stress is realized for metal matrix composites. Benefiting from the composite effects of thermal and vibratory, the wrokpieces will hardly deform in the machining process, but be stable in service dimension and long in fatigue life. Applying this new method to the particle-reinforced aluminum matrix and titanium matrix composites, the scale-span mechanical models of macro-micro composites are established on the basic of residual stress and material microstructure. The inherent variation of residual stress is simulated under coupling thermal and vibratory. A comprehensive platform of the thermal and vibratory is made up for the experiment of stress homogenization. The macro-micro residual stress is detected by laser and synchronism detection experiment. Moreover, integrating theory analysis, simulation and experimental verification will be carried out. The mechanism and law of residual stress homogenization are explored under coupling thermal and vibratory. The solution of consequently, a theoretical and technical foundation can be established for the performance optimization and engineering application of the metal matrix composites.
颗粒增强型金属基复合材料作为新型材料,在航空航天、微电子技术等领域有着广泛的应用前景,然而这种材料在制备过程中,易产生大量残余应力,严重影响关键零部件的使用功能和服役寿命。课题以解决金属基复合材料内在残余应力均化过程中关键科学问题为目标,提出一种高频电磁热-振耦合残余应力均化新方法,即在一定温度条件下对工件施加高频循环振动载荷,通过热与振动时效的耦合效应,实现残余应力的定位松弛与全面均化。针对上述方法,以颗粒增强的铝基、钛基复合材料为研究对象,建立一种基于微观结构和残余应力场的宏微观跨尺度力学模型;仿真热与振动载荷协同作用下材料残余应力的变化,设计高频热-振耦合残余应力均化实验平台,开展双侧加载式的激光与X射线复合式残余应力同步测试实验,探索热-振耦合残余应力均化的机理,揭示材料残余应力场内在的演化规律,为颗粒增强型金属基复合材料性能提高奠定理论基础。
颗粒增强型金属基复合材料作为新型材料,在航空航天、微电子技术等领域有着广泛的应用前景,然而这种材料在制备过程中,易产生大量残余应力,严重影响关键零部件的使用功能和服役寿命。课题以解决金属基复合材料内在残余应力均化过程中关键科学问题为目标,提出一种高频电磁热-振耦合残余应力均化新方法,即在一定温度条件下对工件施加高频循环振动载荷,通过热与振动时效的耦合效应,实现残余应力的定位松弛与全面均化。针对上述方法,以颗粒增强的铝基、钛基复合材料为研究对象,建立一种基于微观结构和残余应力场的宏微观跨尺度力学模型;仿真热与振动载荷协同作用下材料残余应力的变化,设计高频热-振耦合残余应力均化实验平台,开展双侧加载式的激光与X射线复合式残余应力同步测试实验,探索热-振耦合残余应力均化的机理,揭示材料残余应力场内在的演化规律,为颗粒增强型金属基复合材料性能提高奠定理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
宽弦高速跨音风扇颤振特性研究
基于二维材料的自旋-轨道矩研究进展
基于全模式全聚焦方法的裂纹超声成像定量检测
金刚石/铜复合材料的界面热残余应力与界面热导的耦合关联机制研究
基于“热-力-相变”耦合机理的精密切削表面残余应力建模
基于宏微耦合的铝合金板材零件低残余应力热成形机理研究
颗粒增强金属基复合材料搅拌摩擦焊残余应力的多尺度模拟