Electrocatalytic reduction reactions (such as Hydrogen evolution reaction and oxygen reduction reaction) are the key reactions in energy conversion devices, while electrode materials with high conductivity, activity and stability is the guarantee for high performance electrocatalysis. Single crystalline non-noble-metal nanostructures, which possess high stability, high internal conductivity and wide regulation range for surface electronic states, are potential promising electrode materials. However, the synthetic challenges hindered its practical usage. Therefore, the applicants will focus on “topochemical synthesis”, “surface electronic state control” and “interfacial superwettibility tuning” of electrodes, to develop new topotactic synthetic routes for non-noble metal based electrode material, and to fabricate ordered nano/micro multi-scale structure with controlled composition, surface electronic state, wettability, facet exposure and high porosity. The applicants will also systematically investigate the electrocatalytic performance and surface reaction kinetics of the electrodes from macro, meso and microscopic scales. Based on the above research, new synthetic routes and theories will be estabilished, and novel electrodes with high activity, selectivity and stability towards electrocatalytic reduction reactions will be fabricated for the construction of high performance electrocatalytic devices.
电化学催化还原反应(如析氢、氧还原)是很多能量转换器件的基础反应,而高导电性、高活性、高稳定性的电极材料则是保证高效催化反应进行的前提。非贵金属单晶纳米结构由于具有稳定的晶体结构、优异的内部电导通性与宽范围的表面电子态调控空间而有望成为理想电极材料,然而其实际应用却很大程度上受到合成工艺的限制。申请人将尝试从“电极材料拓扑化学合成”、“表面电子结构调控”和“界面超浸润性调控”的角度,根据电催化还原体系特点,发展非贵金属纳米催化材料拓扑化学合成新方法,建立有序微纳复合多尺度电极结构定向制备方法,获得非贵金属基催化材料表面组成和电子态可控性、晶面择优取向性、多孔结构有序性、表面超浸润性的和谐统一;系统研究其电化学性能,在宏观、介观、微观等多尺度上分析电化学反应动力学过程,针对性地发展新的电极材料,实现电催化还原反应活性、选择性和稳定性的同步提高,为构建新的高性能电化学器件打下材料和理论基础。
纳米催化电极材料的构效关系尚不明确,为设计具有特定功能的催化电极表面微纳结构带来困难。本项目从无机化学合成方法学角度,发展了超薄非贵金属基纳米片(包括氢氧化物,金属单质、磷化物等)和纳米线(如碳化物等)结构的构筑和拓扑转化方法,并以电解水为主要的探针反应,探索精细结构调控对其催化性能的影响,建立催化材料电子结构与其活性之间的构效关系,并有效提高了电极材料本征催化性能。在催化材料本征活性提高的基础上,通过对电极表面超薄超细微纳结构的组装方式的调控,实现了对于气体参与的不同反应的浸润性调控:针对耗气反应的“超亲气”电极和针对析气反应的“超疏气”电极,通过改善气体扩散提高整体表观性能。两年申请中国专利11项,发表文章35篇,包括1篇Acc. Chem. Res.,1篇Nat. Commun.,3篇Angew. Chem.,3篇Adv. Energy Mater.,1篇Adv. Funct. Mater.等。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
低轨卫星通信信道分配策略
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
超高长径比的超细贵金属单晶纳米线可控合成、生长机理及性能研究
超细纳米异质结构化学控制合成及性质调控
利用超细纳米纤维制备高效超薄分离膜及其物性研究
贵金属超细纳米线的制备及电催化和电分析应用