One-dimensional (1-D) noble metal nanomaterials have received increasing attention in both basic and applied studies due to their high conductivy, excellent catalytic properties, anisotropy, and those properties possessed by conventional nanomaterials. Compared with 0-D nobel metal nanoparticles, 1-D nobel metal nanostructures are less vulnerable to dissolution, ripening, and aggregation during electrochemcial reactions. Especially, ultrathin noble metal nanowires (diameter < 3 nm) with ultrahigh specific surface areas and outstanding surface catalytic activity are supposed to be the most promising electrode materials. However, due to the synthetic challenges, the basic and applied research in electrocatalysis and electroanalysis of ultrathin noble metal nanowires is still in its infancy. This project is proposed to synthesize ultrathin noble metals and their alloy/heterostructured nanowires by utilizing small molecules as surface confining agents, understand the relationships between structure, composition and their electrochemcial performance, and explore their wide electrochemical applications including third-generation amperometric enzyme electrodes, mediatorless enzymatic biofuel cells, nonenzymatic sensing, heavy metal ion determination, fuel cells and self-powered elctrochemical sensors. The main contents are as follows: (1) synthesis and characterization of noble metals and their alloy/heterostructured nanowires; (2) electrolytic cell-type chemo/biosensing applications; (3) galvanic cell-type chemo/biosensing applications.
一维贵金属纳米材料具有高导电性、强催化性、各向异性以及常规纳米材料所具有的其他性质,其基础和应用研究备受关注。与零维贵金属纳米颗粒相比,一维贵金属纳米结构在电化学反应过程中不易溶解、熟化和聚集,尤其是贵金属超细纳米线(直径<3 nm)具有超高的比表面积和独特的表面催化活性,是理想的电极修饰材料。然而,贵金属超细纳米线不易合成,它们在电催化和电分析方面的基础和应用研究目前尚处于起步阶段。本项目拟采用小分子调控贵金属纳米材料的形貌,合成贵金属及其合金或异质结构的超细纳米线,研究其结构、组成与电化学性能之间的联系,并在第三代安培酶电极、无介体酶生物燃料电池、非酶传感、重金属分析、燃料电池和自驱动式电化学传感器等方面开展应用基础研究,具有新意和意义。主要研究内容如下:(1)贵金属及其合金或异质结构超细纳米线的合成与表征;(2)电解池型化学/生物传感应用;(3)原电池型化学/生物传感应用。
一维贵金属纳米材料具有高导电性、强催化性、各向异性以及常规纳米材料所具有的其他性质,其基础和应用研究备受关注。与零维贵金属纳米颗粒相比,一维贵金属纳米结构在电化学反应过程中不易溶解、熟化和聚集,尤其是贵金属超细纳米线具有超高的比表面积和独特的表面催化活性,是理想的电极修饰材料。然而,贵金属超细纳米线不易合成,它们在电催化和电分析方面的基础和应用研究目前尚处于起步阶段。本项目采用CO、油胺、乙二胺和Triton X-114等为形貌控制剂,调控了Au、Pt、Pd等贵金属纳米材料的形貌,制备了直径1~7 nm的Au、Pt、Pd和Pt3Ni纳米线。研究了形貌控制剂对贵金属纳米晶形貌的调控机制,研究了纳米线的形成和生长机理。利用透射电镜、X 射线衍射、X 光电子能谱、元素分析等技术对制备的材料的形貌、结构、组成等进行了表征。在玻碳电极上修饰了Au,Pt 和Pd超细纳米线,制备了纳米线网状薄膜电极,并考察了纳米线网状薄膜的机械稳定性、导电性和比表面积;以葡萄糖为模型催化底物,利用循环伏安法和计时电流法等电化学方法研究了贵金属纳米线网状薄膜电极在生理条件下对葡萄糖的电催化氧化,考察了抗坏血酸和尿酸的干扰行为,研制了高敏的无酶葡萄糖传感器和无隔膜无酶葡萄糖燃料电池;利用旋转圆盘电极装置考察了Pt及其合金超细纳米线的氧还原性能,发展了一系列高活性、高稳定性的氧还原催化剂。在该课题的资助下,项目负责人已以通讯作者在Energy Environmental Science, Chemical Communications, Chemistry A European Journal, Journal of Materials Chemistry A, ACS Applied materials & Interfaces和Biosensors & Bioelectronics等期刊发表论文13篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
超细纳米线森林的电催化性能研究
超细石墨相氮化碳纳米线及试纸和芯片的制备及其在铜离子检测中的应用
超高长径比的超细贵金属单晶纳米线可控合成、生长机理及性能研究
高灵敏超细氧化钨纳米线传感器的制备研究