The fire safety of high-rise building exterior facade often faces great challenges in the complex fire environment. The commonly-used organic building insulation materials treated with flame retardant can meet the requirement of combustion performance of B1 level in the type inspection, while many harmful external factors can intensify their combustion and flame spread process in the real fire scenarios, which cannot be predicted by the classical flame spread theory well. This project is carried out mainly by the methods of experimental study and theoretical analysis: .1).To reveal the variation laws and heat transfer mechanisms of characteristic parameters during the flame spread process of flame-retardant insulation materials, and establish the mathematical and physical models of flame length, flame height, flame spread rate, mass loss rate, and temperature distributions in both solid and gaseous phases under the coupling of external radiation and environmental airflow. .2).To clarify the critical condition of heat transfer mechanism and mutation phenomenon in the complex fire environment, and establish a mathematical relation model to characterize the critical state of flame spread quantitatively..The existing classical flame spread theory does not consider the influences of excessive charring and melting of materials, and cannot be applied in the condition of flame spread of flame-retardant exterior building facade. This project aims to enrich and complement the classical flame spread theory, and provide the experimental and theoretical references for the fire protection design of building exterior facade and the modification and improvement of relevant fire prevention codes.
在复杂火灾环境中,高层建筑外立面火灾安全面临着巨大的挑战。常用的经过难燃处理的建筑外立面保温材料在实验室型式检验时能够满足燃烧性能B1级的要求,但是真实火灾场景中存在很多不利外界因素会加剧其燃烧和火蔓延过程,而现有的经典火蔓延理论无法对其作出很好的预测。本项目主要采用实验研究与理论分析的方法:.1、揭示难燃保温材料火蔓延过程中关键特征参数变化规律与传热机理,建立耦合辐射热流与环境风速作用下的火焰长度与高度、火蔓延速度、质量流率及气固相温度分布等特征参数演化模型。.2、明晰难燃保温材料在复杂火环境中火蔓延突变现象产生的临界条件,建立可量化表征火蔓延临界状态的数学关系模型。.现有的经典火蔓延理论未考虑材料过度炭化及熔融等因素的影响,无法适用于难燃类建筑外立面火蔓延的情况。本项目可完善和补充经典火蔓延理论,并可为建筑外立面防火设计以及相关防火规范的修订和完善提供实验和理论依据。
在复杂火灾环境中,高层建筑外立面火灾安全面临着巨大的挑战。由于真实火灾场景中存在很多不利外界因素会加剧建筑外墙保温材料燃烧和火蔓延过程,而现有的经典火蔓延理论无法对其蔓延过程做出很好的预测。本项目采用实验研究、理论分析与数值模拟等多种研究方法揭示了建筑保温材料火蔓延过程中关键特征参数变化规律与传热机理,建立了耦合外加辐射热流等多个外部参数的火焰长度与高度、火蔓延速度、质量流率及气固相温度分布等特征参数演化模型,明晰了建筑保温材料在复杂火环境中火蔓延突变现象产生的临界条件,建立了可量化表征火蔓延临界状态的数学关系模型。本项目可完善和补充经典火蔓延理论,并可为建筑外立面防火设计以及相关防火规范的修订和完善提供实验和理论依据。项目负责人在本领域国际期刊发表SCI论文21篇(其中JCR1区论文13篇),包括国际燃烧领域TOP期刊Combustion and Flame 2篇,国际火灾领域TOP期刊Fire Safety Journal 3篇,国际能源与燃烧领域TOP期刊Fuel 1篇,国际隧道协会官方期刊Tunnelling and Underground Space Technology 3篇、国际火灾领域知名期刊Fire and Materials 2篇、国际燃烧领域知名期刊Combustion Science and Technology 2篇,2篇论文入选ESI高被引论文;在本领域权威系列学术会议作口头报告1次;培养研究生4名。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
中国参与全球价值链的环境效应分析
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
掘进工作面局部通风风筒悬挂位置的数值模拟
外墙竖向通道对建筑外立面火蔓延的影响及其机理研究
侧墙限制边界下建筑外立面开口火溢流卷吸行为与特征参数演化研究
持续溢油流淌火燃烧流动耦合特征与蔓延动力学模型研究
体育建筑风环境与空间形态耦合机理及优化设计研究