The aim of the project is to study critical points theory and topological degree theory and also consider the following four kinds of nonlinear problems:1) nonlinear Schrodinger-Poisson problem with two parameters in the whole space,we are concerned with the existence of positive non-radial solutions for one parameter small and the other one large;2)we are concerned with existence and non-existence of solutions of some nonlocal Kirchhoff type problems;3) we study the existence of positive radial-type solutions of one semilinear elliptic equation in some annular-type domian with an expanding hole;4) the existence of sign-changing solutions of some kind of nonlinear Schrodinger equation and the local and global bifurcation structure of positive solutions of the system ofnonlinear Schrodinger (or Gross- Pitaevskii)type equations. Such problems arose from semiconductor theory, see the references for more physical background, also comes from biological systems and from the Bose-Einstein condenstates and nonlinear optics. The study involv many methods and technique,such as invariant sets of descent flow,minimax principle,careful analysis of the spectrum,reduction technique,cut-off technique,approximating technique,a-priori bounds of solutions and so on.
本项目致力于发展临界点理论和拓扑度理论,并用于研究四类失去紧性的非线性变分问题:1)带双参数的薛定谔-泊松系统在全空间上的非径向正解和无穷多个正解;2)参数型非局部基尔霍夫问题解的多重性、变号性质、并揭示参数的实际意义;3)一类椭圆方程在扩张的环形型区域(annular-type)上的径向型(radial-type)正解及渐近性质;4)外部(exterior)区域上椭圆方程的变号解、正解及其局部和整体的分歧结构及最小能量解的渐近行为。研究内容涉及经典传统问题和学科发展当前面临的新问题,涵盖了全空间和临界等情况。采用变分讨论和拓扑方法相结合,临界点和不动点相结合的研究路线,剖析上述问题的解的精细性质,进而揭示干扰元的作用机制。拟采取的研究方案和路线具有众多特色和创新,有众多非线性分析技巧(先验估计、截断、逼近、约化)的应用,研究成果将对非线性分析方法和理论的发展有重要意义。
许多物理(量子力学、相对论、电磁学问题和半导体理论)和生物问题(有关物种扩散、微粒迁移)衍生出的数学问题已经成为非线性研究领域内的重要的热点问题。.本项目致力于发展临界点理论和拓扑度理论,并用于研究四类失去紧性的非线性变分问题:1)带双参数的薛定谔-泊松系统在全空间上的非径向正解和无穷多个正解;2)参数型非局部基尔霍夫问题解的多重性、变号性质、并揭示参数的实际意义;3)一类椭圆方程在扩张的环形型区域(annular-type)上的径向型(radial-type)正解及渐近性质;4)外部(exterior)区域上椭圆方程的变号解、正解及其局部和整体的分歧结构及最小能量解的渐近行为。采用变分讨论和拓扑方法相结合,临界点和不动点相结合的研究路线,剖析上述问题的解的精细性质,进而揭示干扰元的作用机制。拟采取的研究方案和路线具有众多特色和创新,有众多非线性分析技巧(先验估计、截断、逼近、约化)的应用,研究成果将对非线性分析方法和理论的发展有重要意义.
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
泛函微分方程边值问题的变分法
变分法与偏微分方程在机器学习中的应用
变分法在若干非线性问题中的应用
变分法和偏微分方程在医学图像处理中的应用