本项目的研究内容是:从实际问题出发建立和完善现代非线性分析的抽象理论,比如,强不定泛函的Morse理论,非光滑泛函的指标理论,具有跳跃非线性项的偏微分方程临界群的估计,重调和方程或方程组的Liouville定理。进而应用所建立的抽象理论研究具有深刻物理和几何背景的常微或偏微分方程解的存在性和多解性问题。项目的立项不仅可以进一步完善现代分析的理论基础,而且可以解决与实际问题紧密联系的方程解的存在性和多解性问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
地震作用下岩羊村滑坡稳定性与失稳机制研究
卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比
不确定失效阈值影响下考虑设备剩余寿命预测信息的最优替换策略
基于抚育间伐效应的红松人工林枝条密度模型
强不定变分方法在若干非线性问题中的应用
特征理论在若干编码密码问题中的应用
结构矩阵理论在若干插值问题中的应用
人工边界法在非线性外问题中的应用