本项目研究三个方面的问题:(1)一阶和二阶非自治哈密顿系统的周期解、次调和解、同宿轨的存在性和多重性;(2)非局部(nonlocal)Kirchhoff型拟线性椭圆偏微分方程的变号解的存在性和多重性;(3)拟线性双曲组经典解的整体存在性及奇性形成问题。上述都是非常重要的非线性问题,在生态学、天体力学、量子力学和流体力学等领域有着深刻的背景。本项目在已有工作的基础上,拟通过对拓扑方法、变分方法和拟线性双曲组的最新进展的学习,研究一阶和二阶非自治哈密顿系统的周期轨、次调和解、同宿轨和拟线性双曲组的经典解;结合变分方法、拓扑度理论和下降流不变集理论研究Kirchhoff型拟线性偏微分方程的变号解的性质。由于所研究的问题对应的能量泛函是没有紧性,也是强不定的,因而项目组成员还将致力于研究失去紧性的强不定泛函的临界点的存在性和多重性,进而发展相应的极小极大方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
转录组与代谢联合解析红花槭叶片中青素苷变化机制
临界点理论及其对非线性微分方程的应用
变号临界点理论及其对非线性微分方程的应用
临界点理论及对非线性微分方程组的应用
临界点理论及其在非线性微分方程中的应用