The nano-material film, which is normally obtained by assembling 0D/1D nano-materials under the non-covalent bonds, is an important part of many optoelectronic integrated devices. Particularly, its microstructure is one of the key factors affecting device performance. The existing methods have a certain degree of limitation in terms of material adaptability, precise control of microstructure, and low cost of the method. Inspired by the Chinese brush, which has been demonstrated by us previously to enable the controllable transport of molecules, we here plan to systematically study the controllable assembly of nanomaterials induced by fibers and their arrays. We will focus on the physical and chemical mechanism by in-situ monitor the solid-liquid-gas three-phase contact line during the whole process. The fibers with multi-order, multi-scale and multiple asymmetry will be used to guide the nanomaterials solution on the certain substrate, by which the anchoring and spreading of the solutions, and the assemble of nanomaterials on the three-phase contact line was happened/regulated. Furthermore, the effect of fibers on the movement behavior of nanomaterials in solution will be studied by focusing the Marangoni effect and the coffee ring effect. Our final goal is to propose a general approach that enables the patterning nanomaterial films with desired orders, based on which the high performance flexible photoelectric devices can be fabricated. This project will provide new ideas for the low cost, controllable and continuous preparation of patterned nanomaterial films.
纳米材料薄膜,即由零/一维纳米材料在基于非共价键的作用下组装得到的薄膜,是构成诸多光电集成器件的重要组成部分,其微观结构是影响器件性能的关键因素之一。现有的方法在材料的适应性、微观结构的精确控制,和方法的低成本上都有一定程度的局限性。受毛笔启发,本项目拟在前期仿生纤维可控输运分子的研究基础上,系统研究纤维及其阵列诱导的纳米材料的可控限域组装行为及机理,实现图案化有序纳米材料薄膜的可控制备,并进一步研究其光电性质。重点研究多级次、多尺度、多重非对称性的纤维及阵列对纳米材料溶液的诱导、锚定、铺展的界面物理化学机制,原位观察三相接触线的行为,实现纳米材料的可控浸润、组装、取向和图案化。研究纤维调控的纳米材料在溶液中的运动行为,以及对Marangoni效应和咖啡环效应的影响和调控机制,实现纳米材料在薄膜中的可控均匀分布。本项目将为低成本、可控、连续制备图案化有序纳米材料薄膜提供新思路。
纳米材料薄膜,即由零/一维纳米材料在基于非共价键的作用下组装得到的薄膜,是诸多光电薄膜器件的核心功能层,其微观结构是影响器件性能的关键因素之一。现有方法在材料的适应性、微观结构的精确调控,和方法的低成本上都有一定程度的局限性。受毛笔启发,本项目在前期仿生纤维可控输运分子的研究基础上,系统研究了自然界中纤维的特殊浸润行为的物化机制,仿生制备了纤维(阵列),重点研究多级次、多尺度、多重非对称性的纤维对纳米材料溶液的驱动、锚定、铺展的界面物化机制,精确调控了三相线,实现了液体浸润/退浸润的原位调控和超快速定向输运/铺展。进一步发展了纤维(阵列)可控输运液体的新方法,系统研究了纤维限域的纳米材料的可控组装及图案化机理,实现了有序结构图案化薄膜的可控制备(纳米粒子的均匀沉积及纳米线的均匀取向),构筑了系列高性能光电薄膜器件。本项目共发表SCI论文27篇,授权专利2项,为低成本、可控、连续制备图案化有序纳米材料薄膜提供新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
近 40 年米兰绿洲农用地变化及其生态承载力研究
双吸离心泵压力脉动特性数值模拟及试验研究
地震作用下岩羊村滑坡稳定性与失稳机制研究
一维半导体纳米材料光学限域现象的机理、可控性及应用研究
聚合物限域共混纳米沉淀自组装行为及机理研究
限域纳米空间内酸碱有机官能团分子的可控组装及其协同催化机理的研究
共轭高分子的限域可控输运及图案化纳米薄膜制备