Advanced maintenance philosophy and information technology, such as prognostics and health management, condition-based maintenance and decision support systems, have been studied and applied since the sudden failure could bring out some very serious consequences. So this creates a rich data and information environment for system maintenance management, as called rich-information environment. However, faced with the diversity and complexity of data sources, the managers are very difficult to utilize these data to assist maintenance management decisions. And only partly of the regular data are used, such as the real-time monitoring data, time between failures and cost. Especially in the dynamic maintenance management decisions, the lack of the integration and analysis of the diversity management data is more serious. Therefore, this study will try to merge the multi-source, multi-temporal and multi-dimensional data, analyze the potential discipline between these data and system failure, research the association rules between online and outline data and extract information for dynamic maintenance decision through applying the mathematical statistics, data mining and multi-objective decision-making techniques. On this basis, this study will develop new models and methods of dynamic maintenance management decisions and build the complex systems maintenance optimization theoretical framework under rich-information environment. This study also will provide a theoretical foundation for assisting the complex system dynamic maintenance decision with using the diversity data.
因生产系统突发故障的后果十分严重,故障预测与健康管理、基于状况的维修、决策支持系统等维修理念和信息化技术得到了丰富地研究及应用。这就为系统的维修管理创造了一个数据和信息丰富的环境,即富信息环境。然而,面对数据源的多样性和复杂性,管理者很难综合利用这些数据辅助维修管理决策,大多局限于对实时监测、失效时间间隔和费用等常规数据的分析和利用。特别是在动态维修管理决策中,缺乏对多样性数据的融合与分析。因此,本项目将综合运用数理统计、数据挖掘和多目标决策等技术,尝试融合多源、多时相和多维数据,分析这些数据与系统失效之间的潜在规律,研究离线和在线信息数据间的关联规则,为动态维修决策提炼信息。在此基础上,开发动态维修管理决策新模型新方法,构建富信息环境下复杂系统维修最优化的理论框架。本研究将为应用多样性数据辅助开展复杂系统动态维修决策提供理论依据。
历时三年,我们已经完成了该项目研究计划。研究主要围绕复杂可修系统失效数据融合与分析模型研究、复杂可修系统失效单元维修模型研究和复杂可修系统维修最优化方法及应用研究三个方面开展。实现了由数据提炼信息,再由信息产生决策和反馈的理论研究和案例应用相结合。具体来讲,我们运用关联规则建立了离线数据失效模式与多级预防维修之间的关联关系,继而构建了基于单元分类的多级预防维修制度。依据系统使用规律,建立了相应的维修效果评价模型,构建了考虑维修效果与计划水平的预防维修决策优化模型和维修外包策略。截至结题之日,共发表学术论文3篇,其中国家自然科学基金委管理科学重要学术期刊论文2篇;在科学出版社出版专著1部;研究成果获内蒙古自治区第七届哲学社会科学优秀成果政府奖二等奖1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
维修次数有限情形下复杂可修系统最优维修策略研究
可修多部件系统视情非完美维修及其与备件库存的联合决策研究
齿轮动态系统辨识与三维修形
动态情形下状态聚合可修系统可靠性研究