Using bio-templated method to fabricate functional micro/nano particles, structures and composites is one of the up-to-date active research areas around the world. However, the current research is mainly limited to the simple and disorderly use of biological templates. In order to take advantages of diversity, complexity and exquisite structures of microorganism templates, and to enhance their capability of fabricating complex micro/nano structured devices and functional materials with better performances, a novel precise-assembly forming method of micro/nano structures based on microorganism templates is proposed. In the prososal, the underlying alignment mechanisms of complex-shaped microorganism templates in different external physical fields will be studied, the induced forces and movement properties of these bio-templated particles in corresponding circumstances will be revealed, and the processing technology for the diverve functionization of these microorganism templates will be explored. The principles for precise assembly of such particles into ordered functional micro/nano structures and materials, the functions of resulted structures and materials, and the influence mechanism will be studied also. Based on the above research, the microorganism-templated processing technology could be developed from the simple and random use of templates to collectively ordered and precise assembly, so as to provide new approaches to fabricate complicated micro/nano devices and composites. In addition, we could establish novel theories and processing methods on the position and posture adjustment and ordered assembly of the bio-templates, put the bio-inspired and bio-templated disciplines forward, and to further improve the national infulence in this field.
生物模板法来制造功能微粒、结构、材料已成为国际热点研究方向,但目前研究主要局限于生物模板的简单、无序利用。为了充分发挥微生物模板结构多样性、复杂性等优势,提升其制造复杂微纳结构器件、功能材料的能力,提高产品性能,本项目提出基于微生物模板的微纳结构精准组装成形方法。研究通过多物理场对复杂形状微生物模板进行群体定向排布的工艺原理、复杂形状微生物模板在不同物理场中的受力机制及运动特性、微生物模板功能多样化处理工艺及精准组装原理、基于微生物模板组装制造的典型微纳器件/材料的功能及其影响机理等关键科学问题。通过研究,把基于微生物模板的生物成形技术从模板简单、无序利用,发展到群体有序和精准组装的新阶段,为复杂结构微纳功能器件和材料制造提供新手段。建立微生物模板精准位姿调控和有序组装的新理论、新工艺,不断发展仿生生物制造学科的新内涵,持续提升我国在基于微生物模板的微纳制造技术研究方向的国际影响力。
本项目开展了基于微生物模板的微纳结构精准组装成形基础研究,重点以钝顶螺旋藻和硅藻等具有复杂形状的微生物模板及其功能微粒作为构型单元,通过精准组装来制造具有规则有序结构的微器件和功能材料,对其中涉及的关键技术与基础理论进行研究。.首先,开展了螺旋藻生物模板内沉积技术研究,建立了不同类型纳米颗粒在微生物模板内沉积的工艺体系,拓展了功能化微螺旋在催化、抑菌、传感检测、新能源等领域的应用;然后,通过沟槽约束排布、磁场有序组装、机械剪切排布等方法实现了基于生物型微螺旋的功能材料有序制造,拓展了有序微螺旋功能材料在无线通信、THz超材料、电磁屏蔽材料等领域内的应用;随后,开展了基于微生物模板的磁驱动微机器人制造技术研究,实现了微生物基微纳米功能颗粒的可控驱动及精准操控,拓展了微生物模板磁驱动微机器人在微纳操控、靶向运输、抗癌抑菌、污水处理等领域的应用;最后,开展了硅藻群体有序阵列精准制造技术研究,提出了基于微流体芯片、液滴漂浮辅助法、模板限位法的硅藻精准有序操作工艺,拓展了硅藻阵列在功能材料与器件领域的应用。.通过本项目的研究,把基于微生物模板的生物成形技术从模板简单、无序利用,发展到精准组装和有序排布的新阶段,并取得一系列原创性成果,为发展仿生生物制造学科的新内涵奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于微生物模板形体特征的封装成形基础研究
大倾角悬垂结构激光变向成形精准控制基础研究
模板诱导光催化微/纳结构的光化学构筑
硫属化合物纳微结构孔材料的模板组装及调控