无限维代数及其表示与上同调

基本信息
批准号:19971080
项目类别:面上项目
资助金额:10.00
负责人:章璞
学科分类:
依托单位:中国科学技术大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:宋光天,张顺华,郭学军,叶郁,黄华林,傅广宇,武清宇,熊茂胜
关键词:
上同调表示论无限维代数
结项摘要

This project is to study the quantum groups associated with quivers of infinite representation type, and the algebras determined by (possibly infinite) quivers and relations..This research dealt with in general infinite-dimensional algebras, however it used the representation theory of finite-dimensional algebras as a main tool, and took the Ringel-Hall algebras as a bridge between the quantum groups and quivers. We studied the two mentioned objects from their behaviors in structure theory, representation theory, and cohomologies, not only restrictly in one respect. In particular, we classified all representations over any tame quiver such that they fall into the composition algebra of the quiver, which is a subalgebra of the Ringel-Hall algebra generated by all irreducible representations; gave a PBW basis of the composition algebra of the Kronecker algebras; described some properties of the Ringel-Hall algebras and the Green classes in the framework of twisted Hopf algebras and obtained new decompositions of their structures;.proved that the first Hochschild cohomology of a (possibly infinite) quiver vanish if and only if it is a tree. Under the support of this project, we have published up to now 19 papers such as in “Trans. Amer. Math. Soc.”, “J. reine angew. Math.”, “J. Algebra”, “Comm. Algebra”,.“Algebra Colloquium”, “Science in China” etc. These works were cited by colleagues, and were invited to present talks in international conferences and universities. They are certainly progress in the Hall algebra approach to the quantum groups, and also initial instudying relations between infinite quivers and cohomologies.

本项目研究两类具有重要背景的无限维代数:即无限型箭图相应的量子群和无限箭图及关系理想确定的代数。这种研究将表示作为量子群的元素而得到表示与结构之间的关系和分类;以图的组合性质研究代数的(上)同调群并得到相互的分类。这对于从结构、表示、上同调、组合和计算全方位整体地研究无限维代数具有基本的、内在的理论价值和意义。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

DOI:10.11999/JEIT150995
发表时间:2016
2

基于细粒度词表示的命名实体识别研究

基于细粒度词表示的命名实体识别研究

DOI:10.3969/j.issn.1003-0077.2018.11.009
发表时间:2018
3

基于分形维数和支持向量机的串联电弧故障诊断方法

基于分形维数和支持向量机的串联电弧故障诊断方法

DOI:
发表时间:2016
4

基于二维材料的自旋-轨道矩研究进展

基于二维材料的自旋-轨道矩研究进展

DOI:10.7498/aps.70.20210004
发表时间:2021
5

基于协同表示的图嵌入鉴别分析在人脸识别中的应用

基于协同表示的图嵌入鉴别分析在人脸识别中的应用

DOI:10.3724/sp.j.1089.2022.19009
发表时间:2022

章璞的其他基金

批准号:10271113
批准年份:2002
资助金额:16.00
项目类别:面上项目
批准号:11271251
批准年份:2012
资助金额:60.00
项目类别:面上项目
批准号:19301035
批准年份:1993
资助金额:1.80
项目类别:青年科学基金项目

相似国自然基金

1

无限维李代数的表示

批准号:10601057
批准年份:2006
负责人:吕仁才
学科分类:A0105
资助金额:8.00
项目类别:青年科学基金项目
2

无限维李代数的权表示与非权表示

批准号:11271109
批准年份:2012
负责人:赵开明
学科分类:A0105
资助金额:60.00
项目类别:面上项目
3

李代数及相关代数的结构与无限维表示

批准号:10671027
批准年份:2006
负责人:朱林生
学科分类:A0105
资助金额:26.00
项目类别:面上项目
4

几类无穷维李代数的上同调和表示理论

批准号:11026042
批准年份:2010
负责人:裴玉峰
学科分类:A0105
资助金额:3.00
项目类别:数学天元基金项目