Compared with the traditional semiconductor oxide gas sensor, the graphene-based gas sensor has many advantages such as easy operation, easy integration, high safety and low power consumption, and has drawn wide attention in the field of gas sensors. However, its low sensitivity to target gas and its long response time limit its further application. The design of material structure to improve the gas adsorption and desorption efficiency is a necessary means to develop high performance graphene based sensors. In this project, graphene/semiconductor oxide (G/MOx) composite thin film is prepared by electrostatic induction layer-by-layer assembly technology, which combines the sensing characteristics of graphene and semiconductor oxide and solves the increase of surface energy, the reduction of the specific surface area caused by the small size effect of nanomaterials to obtain high sensitivity at room temperature, fast response gas sensing material. Through the study, we ultimately build a gas sensor based on the composite film, in order to achieve a high practical Graphene-based gas sensors with valuable performance and provide a scientific basis.
石墨烯基气体传感器相对于传统半导体氧化物气体传感器具有室温工作、易于集成、安全性高、低功耗等众多优点在气体传感器领域受到广泛关注。然而其对目标气体灵敏度较低、响应恢复时间长的问题限制了其进一步应用,对其进行材料结构设计从而提升气体吸附及脱附效率是开发高性能石墨烯基传感器的必要手段。本项目拟采用静电诱导层层组装技术制备石墨烯/半导体氧化物(G/MOx)复合薄膜,在结合石墨烯及半导体氧化物气体传感特性的同时,解决纳米材料小尺寸效应引起表面能升高、粒子团聚导致的比表面积下降的难题,获得室温条件下高灵敏度,快响应的气体传感材料,通过开展该项研究,最终构建基于该复合薄膜的气体传感器,为实现具有实用价值的高性能石墨烯基气体传感器提供科学依据。
石墨烯基气体传感器相对于传统半导体氧化物气体传感器具有室温工作、易于集成、安全性高、低功耗等众多优点在气体传感器领域受到广泛关注。本项目已采用静电诱导层层组装技术制备石墨烯/半导体氧化物(G/MOx)复合薄膜,在结合石墨烯及半导体氧化物气体传感特性的同时,解决纳米材料小尺寸效应引起表面能升高、粒子团聚导致的比表面积下降的难题,获得室温条件下高灵敏度,快响应的气体传感材料,通过开展该项研究,最终构建基于该复合薄膜的气体传感器,为实现具有实用价值的高性能石墨烯基气体传感器提供科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
层层组装石墨烯/导电聚苯胺及其衍生物复合热电薄膜材料
层层自组装构筑三维结构石墨烯纳米复合薄膜及其电化学应用
结构有序的石墨烯/导电聚合物复合薄膜的层层自组装构筑及其热电性能研究
基于金属氧化物/氧化石墨烯层层自组装构筑柔性纤维复合材料及其功能性研究