This project dedicates to investigation of the design and synthesis of hollow core@shell Fenton nanoreactor (HCSFN) and its enhanced removal mechanism for phenolic mircopollutants in aquatic systems. In order to solve the problems in traditional Fenton process, including inefficiency of the hydroxyl radical and lower Fe2+ regeneration ability from Fe3+, this project proposes to synthesize HCSFN with tunable void by using Fe0-FeOx composite as core, ordered mesoporous structure as shell. This project will start from the structure design of the HCSFN and obtain the effective measures to control its structure. The tunable rules on the morphology of the naoreactor, the component of Fe0-FeOx composite as well as the void structure in the HCSFN will be investigated. Then, more attention will be focused on the enhanced removal mechanism for mircopollutants in the HCSFN, in which bisphenol A (BPA) is chosen as a typical phenolic mircopollutants in aquatic systems. The adsorption and degradation properties of BPA in the nanoreactor, the fate, presents state, distribution state of iron species in the void and interface reaction mechanism of Fe0 on the Fe2+ conversion from Fe3+ will be elucidated. The enhanced removal mechanism of BPA on catalyst confined in the void of the HCSFN and the relationship between the removal efficient and the structure of HCSFN will be made clear. Based on the study of these scientific problems, the technical problems of inefficiency of the hydroxyl radical and lower Fe2+regeneration ability from Fe3+ which are currently main obstacles in traditional Fenton process will be solved. This project will offer technical support for efficient removal of refractory micropollutants from aquatic system.
本项目提出构筑中空核壳Fenton催化纳米反应器并开展其对酚类微污染物增效去除的研究思路。针对经典Fenton反应面临的羟基自由基利用率低和Fe3+/Fe2+转化慢的技术难题,从催化剂结构设计出发,形成以Fe0-FeOx为"核"、有序介孔结构为"壳"、空腔尺度可调变的中空Fenton催化反应器。阐明中空核壳纳米反应器的形貌、催化剂组成及结构的调变规律,重点围绕以双酚A为代表的目标污染物在纳米反应器内的增效去除机理展开研究。通过探讨反应器中目标污染物的吸附降解及其转化行为,铁物种去向、赋存形态、分布状态及Fe0对Fe3+向Fe2+转化的界面反应机制,揭示限域于空腔结构内复合催化剂对目标污染物的增效去除机理,诠释中空核壳催化纳米反应器结构调变和目标污染物协同去除的构效关系。通过这些科学问题的研究和探索,解决经典Fenton催化体系面临的技术难题。为水中难降解有机微污染物的高效去除提供技术支撑。
本项目针对经典Fenton反应面临的羟基自由基利用率低和Fe3+/Fe2+转化慢的技术难题,开展了构筑中空核壳Fenton催化纳米反应器并将其应用于酚类微污染物增效去除的研究工作。从催化剂结构设计出发,形成以Fe0-FeOx为"核"、有序介孔结构为"壳"、空腔尺度可调变的中空Fenton催化反应器。阐明了中空核壳纳米反应器的形貌、催化剂组成及结构的调变规律,重点围绕以双酚A为代表的目标污染物在纳米反应器内的增效去除机理展开研究。通过探讨反应器中目标污染物的吸附降解及其转化行为、铁物种去向、赋存形态、分布状态及Fe0对Fe3+向Fe2+转化的界面反应机制,揭示了限域于空腔结构内复合催化剂对目标污染物的增效去除机理,诠释了中空核壳催化纳米反应器结构调变和目标污染物协同去除的构效关系。在本项目的资助下共发表学术论文35篇,其中SCI论文34篇(一区22篇,二区8篇),影响因子8.0以上有11篇,有3篇论文先后入选ESI高被引论文包括Adv Fun Mater(1), App Cata B: Environ(1), Water Res(1), J Mater Chem A(5), ACS App Mater Interface(4), J Hazard Mater(2), Chem Eng J(2)等。论文发表的影响因子累计为225.987,被引451次(截至2019年1月18日)。申报发明专利10项,授权美国和国内发明专利各1项。在本项目的资助下,已培养博士研究生4人;培养硕士研究生2人, 其中一位博士生获高廷耀环保科技发展基金会“2017年青年博士生杰出人才奖学金”和首届工信部创新特等奖学金。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
内点最大化与冗余点控制的小型无人机遥感图像配准
基于细粒度词表示的命名实体识别研究
多壳层中空介孔核-壳结构的设计及功能化纳米反应器的构筑
核壳结构纳米金属/金属氧化物催化活化分子氧新型异相Fenton体系的构筑及其机制研究
基于SO4•–的非均相类Fenton/光催化协同纳米反应器构筑及协同反应机制
核壳型磁性纳米材料的表面构筑及其催化净水机理研究