This project will study taxation and optimal dividend problems for some kinds of risk models with randomized observation periods. It is the latest topic in the risk theory, but also cross-over study in the risk theory and financial insurance field. The concept of randomized observation periods has been introduced in recent years, meant that the insurance company checks the balance on a periodic basis rather than continuous observations. The risk model in the framework of stochastic observations has practical and theoretical value. To this end, this project will study the following problems: first, we embed loss-carry-forward taxation and random observations into the risk model, and consider the ruin probability, the Gerber-Shiu function, the expected discounted tax payments and the optimal taxation strategy. Second, we study the optimal dividend problem of risk models with random observations, found the optimal dividend strategy for the random dividend problem by HJB equation, and obtain the ruin probability, the expected discounted penalty function, the expectation of discounted dividends and the optimal dividend barrier. Finally, we investigate the bankruptcy problem in the piecewise-deterministic Markov process by their properties, and discuss relative properties of the bankruptcy property and the total duration of the negative surplus. The research of this project conforms to the development of insurance undertakings, and will promote the practical application of stochastic process theory.
本项目拟研究几类随机观察风险模型的税收与最优分红问题,这是风险理论中的最新热点课题,也是随机过程理论与金融保险领域的交叉研究。“随机观察”是近几年新引入的概念,指的是保险公司定期检查公司的财务状况,而不是连续地监测。在随机观察框架下建立的风险模型,具有很好的实际意义与研究价值,以此为出发点,本项目将研究以下问题:一、将loss-carry-forward税收因素融入到随机观察风险模型的构建中,考虑破产概率、Gerber-Shiu函数、期望折现税收和最优收税边界;二、研究随机观察风险模型中的最优分红问题,利用HJB方程的方法得到“随机分红”问题的最优分红策略,还涉及破产概率、期望罚金函数、期望折现分红及最优分红边界;三、结合过程本身的性质研究逐段决定马尔可夫过程的实质性破产问题,讨论实质性破产概率和负持续时的相关性质。本项目的研究符合当前保险事业的发展需求,将促进随机过程理论的实际应用。
本项目主要研究了几类随机观察风险模型的税收与分红问题及其实质性破产相关问题,这是风险理论中的热点课题,也是随机分析、随机过程理论与金融保险领域的交叉研究。项目组在该领域的研究中取得一些进展,得到了许多预期结果,目前已有7篇论文正式发表。以建立更加贴近实际的风险模型为目标,我们的主要工作是拓展与推广了几类经典风险模型,在随机观察的框架下,研究了税收、分红、实质性破产等一系列问题。我们以复合泊松过程为基础模型,考虑随机观测和征税因素,得到了破产概率、Gerber-Shiu函数、期望折现税收量,以及最优的征税边界等相关精算量的表达式。针对随机观测下两面跳对偶风险模型,我们给出了破产时的Laplace变换、破产时赤字的期望折现函数和破产概率所满足的积分微分方程,在两面跳均服从指数分布情况下,得到了破产概率的显性表达式;还考虑了此模型的分红问题,计算了期望折现分红函数的表达式。此外,我们分别研究了带三段保费的复合泊松Omega风险模型和带两段保费的扩散复合泊松Omega风险模型的实质性破产问题,给出了Gerber-Shiu函数、实质性破产概率和期望折现分红函数的表达式。同时,我们还研究了保费依赖当前盈余值的风险过程的典型问题,得到了一些精算量的极值分布与联合分布。本项目中问题的解决,对随机过程理论研究及其在金融保险中的应用均具有积极意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis
倒装SRAM 型FPGA 单粒子效应防护设计验证
Lost Gas Mechanism and Quantitative Characterization during Injection and Production of Water-Flooded Sandstone Underground Gas Storage
Asymptotic properties and information criteria for misspecified generalized linear mixed models
基于机载光子雷达的远距离舰船类型识别
几类风险模型的最优分红问题研究
随机风险模型中最优分红-注资策略及相关问题
考虑随机观察时间的马尔可夫到达风险模型的分红问题
随机保险模型中的最优分红及风险控制研究