考虑随机观察时间的马尔可夫到达风险模型的分红问题

基本信息
批准号:11426100
项目类别:数学天元基金项目
资助金额:3.00
负责人:彭丹
学科分类:
依托单位:湖南科技大学
批准年份:2014
结题年份:2015
起止时间:2015-01-01 - 2015-12-31
项目状态: 已结题
项目参与者:刘东海,伏东奇
关键词:
随机观察时间风险模型马尔可夫次指数分布
结项摘要

The risk model with dividend strategy has become one of the hot topics in risk theory. The project consider dividend problems in risk model where claims arrive according to a Markovian arrive process, the main contents include: (1)We consider a MAP risk model with exponentially distributed observation time under barrier strategy, and we will derive and solve the integro-differential equations for the Gerber-Shiu expected discounted penalty function and the total dividend payments, then we present some asymptotic formulas for the Gerber-Shiu expected discounted penalty function and the total dividend payments until ruin when the claim size is subexponential distribution of S; (2)We consider a MAP risk model with Erlang(n) distributed observation time under barrier strategy, and we will derive and solve the integro-differential equations for the Gerber-Shiu expected discounted penalty function and the total dividend payments, then we present some asymptotic formulas for the Gerber-Shiu expected discounted penalty function and the total dividend payments when the claims size is subexponential distribution of S; (3)We consider dividend problems on the perturbed MAP risk model under exponentially distributed observation time or Erlang(n) distributed separately, and then we will derive and solve the integro-differential equations for the Gerber-Shiu expected discounted penalty function and the total dividend payments, and then present some asymptotic formulas for the Gerber-Shiu expected discounted penalty function and the total dividend payments when the claim size is subexponential distribution of S.

近年来分红策略下的风险模型成为风险理论的研究热点之一。本项目拟研究带随机观察时间的马尔可夫到达风险模型的分红问题,主要内容包括:(1)考虑观察时间为指数分布的障碍分红策略下的马尔可夫到达风险模型,讨论Gerber-Shiu折现罚函数和累积分红折现均值满足的积分微分方程及其解,并研究索赔额属于次指数分布族S时相应的渐进公式;(2)考虑观察时间为Erlang(n)分布的障碍分红策略下的马尔可夫到达风险模型,讨论Gerber-Shiu折现罚函数和累积分红折现均值满足的积分微分方程及其解,并研究索赔额属于次指数分布族S时相应的渐进公式;(3)分别考虑观察时间为指数分布和Erlang(n)分布的障碍分红策略下带扰动的马尔可夫到达风险模型,讨论Gerber-Shiu折现罚函数和累积分红折现均值满足的积分微分方程及其解,并研究索赔额属于次指数分布族S时相应的渐进公式。

项目摘要

(1)考虑观察时间为指数分布的障碍分红策略下的两离散相依险种的马尔可夫风险模型的分红问题,其中险种的相依性是假定一个险种的主索赔以一定的概率引起另外一险种的副索赔, 且副索赔可能延迟发生, 推导了到破产前一时刻为止累积分红折现均值满足的差分方程, 并得到了索赔额分布是有理函数时累积分红折现均值和破产概率的的具体表达式, 并结合实际例子进行了数值模拟.(2) 考虑随机观察时间的常数分红策略和有流动盈余准备金的马尔可夫风险模型的分红问题,在绝对破产概率下得到了破产前累积分红折现均值以及破产概率的具体表达式,并对指数索赔下破产前累积分红折现均值进行了数值模拟,讨论了模型中相关参数对累积分红折现均值的影响。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
2

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

DOI:10.11999/JEIT150995
发表时间:2016
3

自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例

自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例

DOI:10.12054/lydk.bisu.148
发表时间:2020
4

中国参与全球价值链的环境效应分析

中国参与全球价值链的环境效应分析

DOI:10.12062/cpre.20181019
发表时间:2019
5

基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例

基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例

DOI:
发表时间:2022

彭丹的其他基金

批准号:11501191
批准年份:2015
资助金额:18.00
项目类别:青年科学基金项目
批准号:61403335
批准年份:2014
资助金额:25.00
项目类别:青年科学基金项目
批准号:31601537
批准年份:2016
资助金额:20.00
项目类别:青年科学基金项目

相似国自然基金

1

几类随机观察风险模型中的税收与最优分红问题

批准号:11601382
批准年份:2016
负责人:王姗姗
学科分类:A0603
资助金额:18.00
项目类别:青年科学基金项目
2

马尔可夫调制下跳扩散风险模型的分红优化与数值计算研究

批准号:11501191
批准年份:2015
负责人:彭丹
学科分类:A0210
资助金额:18.00
项目类别:青年科学基金项目
3

马尔可夫到达排队系统的建模分析及算法研究

批准号:10971230
批准年份:2009
负责人:刘再明
学科分类:A0209
资助金额:25.00
项目类别:面上项目
4

带马尔可夫参数更新跳跃风险模型的研究

批准号:11126253
批准年份:2011
负责人:张振中
学科分类:A0210
资助金额:3.00
项目类别:数学天元基金项目