The index theory of Fredholm operators in Hilbert space is an important part of operator theory and operator algebras, and nowadays plays a key role in many areas of modern mathematics (noncommutative geometry, large-scale analysis, K-theory, differential equations, function theory, etc.). Recently,the theory of non-selfadjoint operator algebras has undergone a vigorous development,and its applications are becoming more and more widespread. Naturally, the index theory in non-selfadjoint operator algebras need to be studied deeply. In this project, we will study the index theory in nest algebra, which is a kind of typical non-selfadjoint operator algebras. We will focus on the key problem "Whether the Fredholm index constitutes a complete systems of homotopy invariants for all Fredholm operators in a nest algebra" and study some related problems. We will also explore some fine topological and geometrical structures of nest algebras, and expect to establish a close connection between topology, geometry and nest algebras.
Hilbert空间Fredholm算子的指标理论是算子理论和算子代数的重要组成部分,并在现代数学的很多领域(非交换几何、大范围分析、K-理论、微分方程、函数论等)有着广泛和重要的应用。近年来,非自伴算子代数理论不断的发展和深入,它的应用也日益广泛。自然地,非自伴算子代数中的指标理论需要得到深入的研究。在本课题中,我们将研究典型的非自伴算子代数- - 套代数的指标理论。我们拟从"指标是否是套代数中Fredholm算子的完全同伦不变量"这一核心问题入手,研究套代数中的指标理论的相关问题并探求套代数内部更为深入的拓扑与几何结构,期望能够建立套代数与拓扑、几何间更密切的联系。
在本项目中,我们主要研究套代数中的指标理论及与其相关的算子理论和算子代数中的问题。我们按照项目计划书开展研究,在若干关键问题上均取得了进展,基本完成了项目的研究任务。代表性的成果有:1、对于一类序型为ω、每个原子均是有限维的套代数,我们解决了(可逆元群)连通性问题。2、计算了非交换圆盘代数的拓扑稳定秩并给出了其极大理性空间的完全刻画。3、完全解决了复对称算子的范数闭包问题。4、得到了正规算子、部分等距是斜对称算子的刻画。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
城市轨道交通车站火灾情况下客流疏散能力评价
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响
Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway
套代数中的算子逼近和扰动
指标理论及其在量子场代数中的应用
套代数及相关问题
Toeplitz代数的指标理论及循环上同调