离散对数 Minkowski 问题的研究

基本信息
批准号:11526079
项目类别:数学天元基金项目
资助金额:3.00
负责人:郭路军
学科分类:
依托单位:河南师范大学
批准年份:2015
结题年份:2016
起止时间:2016-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:赵紫成,齐泽心
关键词:
离散测度Minkowski凸体BrunnMinkowski理论问题对数
结项摘要

Convex geometric analysis is an interdisciplinary subject of geometry and functional analysis which has developed on the basis of the classical Brunn-Minkowski theory at the end of the twentieth Century. The Minkowski problem is an important open problem in convex geometric analysis, and it is also one of the hottest issues studied by modern geometers. The logarithmic Minkowski problem is considered to be the most important and difficult part of the Minkowski problem, and it is not completely solved even in low dimensional space. In this project,we mainly concentrate on the following contents: the existence of discrete logarithmic Minkowski problem in three-dimensional space; the uniqueness of the logarithmic Minkowski problem for the special convex bodies in three-dimensional space. During the research, by combining partial differential equation, the local asymptotic theory and the Brunn-Minkowski theory together, we will strive to find a more reasonable mathematical tool to solve the problems of the existence and uniqueness for the discrete logarithmic Minkowski problem in three-dimensional space.

凸几何分析是20世纪末在经典Brunn-Minkowski理论的基础上发展起来的几何学与泛函分析相结合的一门交叉学科。 Minkowski 问题是凸几何分析中一个重要的公开问题,也是现代几何学家们研究的热点问题之一。对数Minkowski问题被认为是Minkowski问题中最重要而且难度也最大的一部分,甚至在低维空间中该问题也没有得到完全解决。本项目的主要研究内容是:三维空间中离散对数Minkowski问题的存在性;三维空间中特殊凸体类上对数Minkowski问题的唯一性。在研究过程中,我们将偏微分方程、局部渐进理论和Brunn-Minkowski理论相结合,寻找更合理的数学工具,力争解决三维空间中离散对数Minkowski问题的存在性和唯一性。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

黄河流域水资源利用时空演变特征及驱动要素

黄河流域水资源利用时空演变特征及驱动要素

DOI:10.18402/resci.2020.12.01
发表时间:2020
2

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

DOI:10.3870/j.issn.1001-4152.2021.10.047
发表时间:2021
3

面向云工作流安全的任务调度方法

面向云工作流安全的任务调度方法

DOI:10.7544/issn1000-1239.2018.20170425
发表时间:2018
4

当归补血汤促进异体移植的肌卫星细胞存活

当归补血汤促进异体移植的肌卫星细胞存活

DOI:
发表时间:2016
5

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019

郭路军的其他基金

批准号:12126319
批准年份:2021
资助金额:10.00
项目类别:数学天元基金项目
批准号:11801151
批准年份:2018
资助金额:25.00
项目类别:青年科学基金项目

相似国自然基金

1

Dar猜想与对数Minkowski问题

批准号:11601310
批准年份:2016
负责人:席东盟
学科分类:A0108
资助金额:18.00
项目类别:青年科学基金项目
2

椭圆曲线离散对数问题的覆盖攻击

批准号:61802401
批准年份:2018
负责人:田松
学科分类:F0206
资助金额:25.00
项目类别:青年科学基金项目
3

椭圆曲线离散对数研究

批准号:61672059
批准年份:2016
负责人:徐茂智
学科分类:F0206
资助金额:62.00
项目类别:面上项目
4

Minkowski问题及其相关问题研究

批准号:11161024
批准年份:2011
负责人:朱先阳
学科分类:A0206
资助金额:35.00
项目类别:地区科学基金项目