椭圆曲线离散对数研究

基本信息
批准号:61672059
项目类别:面上项目
资助金额:62.00
负责人:徐茂智
学科分类:
依托单位:北京大学
批准年份:2016
结题年份:2020
起止时间:2017-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:王平,张宇红,彭波,张猛,祝捷,张样攀,郭兆中,周圆,侯朕铎
关键词:
离散对数问题函数域椭圆曲面椭圆曲线密码密码学
结项摘要

Elliptic curve cryptology(ECC)is an important research area of cryptology. The traditional type of such cryptosystem is constructed by using the scalar multiplications of elliptic curve over finite fields, and pairing based cryptosystem is constructed by using bilinear pairing from an elliptic to a field. ECC are believed to be one of the core technology for their promising and widespread usage in information security area. However, an elliptic curve cryptosystem is secure only if when the discrete logarithm problem of the elliptic over finite fields is hard enouph. The main goal of this project will be analysis for ECC cryptosystem, or find high efficient algorithms for solving discrete logarithm problem for large scale elliptic curves, especially concerning for those open challenge problems proposed by the Certicom company. First, we devote to the factorization theory in algebraic function fields and the development for the arithmetic theory for Kummer theory, applying it to the index calculus on algebraic function fields. Another object is to make deep study in the specialization theorem about the elliptic surface, and find the relationship between different elliptic curves, that are different fibers on the surface, that makes it possible to solve DLP for one elliptic curve by the solutions of DLP for another weak elliptic curve. We will also study properties for Semaev's summation polynomials and develop their arithmetic theory,this is quite important for index calculus on elliptic curves. We are also interested to the improvement of calculations on Hilbert polynomial,that make it possible to construct elliptic curves by complex multiplications for little bit large discriminant, so that one can find elliptic curves with special properties more freely.

椭圆曲线密码(Elliptic Curve Cryptology,简称ECC)是密码学的一个重要研究方向。一类是基于有限域上标量乘的经典椭圆曲线密码,另一类是基于椭圆曲线上的配对的密码,是信息安全领域具有广泛应用价值的一种核心技术。而椭圆曲线离散对数求解困难性是椭圆曲线安全性的基础。本项目研究代数函数域的分解理论,kummer理论的算法实现,从而构造代数函数域上的指标演算法;研究椭圆曲面特值化理论,通过椭圆曲面把不同强度的椭圆曲线离散对数问题联系起来,从而由弱曲线的上的求解算法得到其他曲线上的离散对数解法;研究Semaev多项式的性质和计算方法,从而改进现有的椭圆曲线上指标演算法;研究Hilbert多项式的计算方法,从而实现对较大的复乘判别式情形下,各种性质的椭圆曲线的构造;把这些结果用于大规模的椭圆曲线离散对数问题的求解,挑战Certicom公司的公开问题。

项目摘要

椭圆曲线密码(Elliptic Curve Cryptology,简称ECC)是密码学的一个重要研究方向。其主要研究目标分为三种类型:其一是对有限域上标量乘、椭圆曲线上的配对计算、椭圆曲线同源计算的高效实现;其二是椭圆曲线离散对数求解困难性、椭圆曲线同源反问题计算的困难性研究基于的密码;其三是在前两者研究的基础上各种密码算法、密码协议的构造和安全性证明。本研究以椭圆曲线离散对数困难性为主要研究内容,同时研究了若干密码算法协议的设计和安全性证明。本项目研究了代数函数域的分解理论,kummer理论的算法实现,从而构造代数函数域上的指标演算法;研究椭圆曲面特值化理论,通过椭圆曲面把不同强度的椭圆曲线离散对数问题联系起来,从而由弱曲线的上的求解算法得到其他曲线上的离散对数解法;研究Semaev多项式的性质和计算方法,从而改进现有的椭圆曲线上指标演算法;研究了多个基于椭圆曲线设计的密码算法、密码协议的效率和安全性。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
2

面向工件表面缺陷的无监督域适应方法

面向工件表面缺陷的无监督域适应方法

DOI:
发表时间:2021
3

基于空洞卷积鉴别器的语义分割迁移算法

基于空洞卷积鉴别器的语义分割迁移算法

DOI:10.11896/jsjkx.191100014
发表时间:2020
4

有理Bezier曲线的近似弦长参数化算法

有理Bezier曲线的近似弦长参数化算法

DOI:10.3724/SP.J.1089.2019.17643
发表时间:2019
5

前件变量未知的T-S模糊系统输出反馈控制

前件变量未知的T-S模糊系统输出反馈控制

DOI:10.13195/j.kzyjc.2018.0134
发表时间:2019

徐茂智的其他基金

批准号:61272499
批准年份:2012
资助金额:80.00
项目类别:面上项目
批准号:90104004
批准年份:2001
资助金额:80.00
项目类别:重大研究计划

相似国自然基金

1

椭圆曲线离散对数问题的覆盖攻击

批准号:61802401
批准年份:2018
负责人:田松
学科分类:F0206
资助金额:25.00
项目类别:青年科学基金项目
2

一类带辅助输入椭圆曲线离散对数问题安全性分析研究

批准号:61902426
批准年份:2019
负责人:翁江
学科分类:F0206
资助金额:29.00
项目类别:青年科学基金项目
3

离散对数 Minkowski 问题的研究

批准号:11526079
批准年份:2015
负责人:郭路军
学科分类:A0109
资助金额:3.00
项目类别:数学天元基金项目
4

椭圆曲线的算术

批准号:11701092
批准年份:2017
负责人:舒杰
学科分类:A0103
资助金额:23.00
项目类别:青年科学基金项目