With the rapid development of social media, the last few years have witnessed growing interests from different fields in classifying social media users. Unlike the text or image classification, classification of social media users has three challenging issues: (1) users are of heterogeneous features; (2) multiple features are usually correlated; and (3) users may have multi-labels. The essential issues of this project are finding how to design an appropriate model to represent the feature space of users, studying effective methods for integrating heterogeneous features, and optimizing the classification algorithms under a multi-label learning environment. In this project, on the basis of a hierarchical framework to represent the multi-relational property of social media users, we aim at studying the fusion techniques for heterogeneous features and the multi-label classification techniques for social media users. The contents of this research are threefold: (1) a content based matching algorithm for heterogeneous features graphs, which aims to solve the fusion process of text, image, and user information, etc.; (2) a dynamical matching algorithm, which integrates the reported time information of social media such that the user-between similarity can be evaluated under a dynamical environment; (3) a social relation fusion based multi-label classifier, which enables us to solve both the fusion of the social relation among users and the multi-label classification problem.
随着社会媒体的普及应用,社会媒体用户分类已经成为很多应用领域广泛关注的研究问题,其面临着与传统的文本、图像等单个对象分类所不同的三个重要挑战:异构特征、多特征复杂关联和多类标问题。课题研究的关键科学问题是:如何针对社会媒体用户设计合理的特征空间表示模型,并研究有效的异构特征融合方法,从而在多类标环境下使社会媒体用户的分类算法得到优化。本课题首先提出面向社会媒体用户的多关系层级结构图表示模型。在此基础上,重点研究面向社会媒体用户的异构特征融合技术和多类标分类技术,具体内容包括:(1)基于内容的异构特征子图匹配算法,用于解决文本、图像和用户信息及评论的融合问题;(2)基于时序特征融合的动态匹配算法,用于融合时间信息并解决在时间动态环境下的用户相似度衡量问题;(3)基于社会关系融合的社会媒体用户多类标分类算法,用于融合用户的社会关系信息,并同时解决多类标分类问题。
随着社会媒体的普及应用,社会媒体用户分类已经成为很多应用领域广泛关注的研究问题,其面临着与传统的文本、图像等单一对象分类所不同的三个重要挑战:异构特征、多特征复杂关联和多类标问题。课题研究的关键科学问题是:如何针对社会媒体用户设计合理的特征空间表示模型,并研究有效的异构特征融合方法,从而在多类标环境下使社会媒体用户的分类算法得到优化。本课题首先提出面向社会媒体用户的多关系层次结构表示框架。在此基础上,重点研究面向社会媒体用户的异构特征融合技术和多类标分类技术。课题的创新在于:(1)提出基于内容的异构特征子图匹配算法,用于解决文本、图像和用户信息及评论的融合问题;(2)提出基于时序特征融合的动态匹配算法,用于融合时间信息并解决在时间动态环境下的用户相似度衡量问题;(3)提出基于社会关系融合的社会媒体用户多类标分类算法,用于融合用户的社会关系信息,并同时解决多类标分类问题。依托本项目,已发表论文21篇,其中SCI期刊论文12篇(包括IEEE Trans. 顶级期刊论文6篇),EI检索论文9篇;申请国家发明专利4项。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
拥堵路网交通流均衡分配模型
基于多模态信息特征融合的犯罪预测算法研究
面向云工作流安全的任务调度方法
城市轨道交通车站火灾情况下客流疏散能力评价
喀喇昆仑山-西昆仑山阿克塞钦湖地区晚白垩世铁隆滩群红色-白色浅水碳酸盐岩旋回层的成因及其古环境意义
基于多社会媒体的用户建模技术研究
跨域异构媒体信息的社会化推荐关键技术研究
异构媒体数据建模、融合及识别关键技术
多源异构实时多媒体信息融合传输技术研究