The friction pair of artificial joint implantation prosthesis is hard-hard contact form, which can easily lead to the artificial joints wear, aseptic loosening and failure. The best choice to solve the wear and aseptic loosening of artificial joint is to manufacture the soft-soft friction interface with high reliability and long-life based on the multi-layer pore structure of natural cartilage and the soft-soft friction interface form of natural joints. In this project, the high strength, low permeability and wear resistant multi-layer isomerism bionic articular cartilage material is designed and the high reliability, long-life soft-soft friction interface bionic joint is constructed with situ chemical grafting technology, directional solidification, non-directional solidification and annealing technology from the multi-layer pore structure of natural cartilage and the soft-soft friction interface form of natural joint. The pore permeability mechanism and fluid load support is investigated and the relationship between multi-layer isomerism and fluid load support is explored of bionic articular cartilage material. The fluid-solid coupling load support lubrication mechanism of multi-layer isomerism bionic articular cartilage material with soft-soft friction interface is illuminated and the basic theory of biomechanics and biotribology is established of multi-layer isomerism bionic articular cartilage material with soft-soft friction interface. The basic theory is provided for solving the problem of wear failure of bionic articular cartilage material and finally this project can provide the scientific basis and technology support to design and manufacture the high reliability, long-life bionic joint with soft-soft friction interface.
人工关节植入假体之间的配副为硬-硬接触,容易引起人工关节的磨损,进而导致无菌性松动及失效,基于天然软骨结构及天然关节接触形式,仿生制造新型软-软界面的人工关节是解决人工关节磨损和无菌性松动问题的最佳选择。本项目从天然软骨的多层孔隙结构、天然关节的软-软摩擦界面形式及其承载润滑机制出发,基于化学接枝、定向凝固、非定向凝固、退火法等技术,仿生设计高强度、低渗透及耐磨损的多层异构仿生关节软骨材料,构建高可靠性、长寿命的软-软摩擦界面;研究仿生关节软骨材料的孔隙渗透机制、液体承载机理,探明多层异构孔隙结构与生物力学承载的关系,阐明多层异构仿生关节软骨材料软-软摩擦界面的流-固耦合承载润滑机制,建立多层异构仿生关节软骨材料软-软摩擦界面的生物力学、生物摩擦学基础理论。为根本解决仿生关节软骨材料磨损失效问题提供基础理论,最终为制造高可靠性、长寿命的软-软摩擦界面仿生关节提供理论基础及技术支撑。
人工关节植入假体之间的配副为硬-硬接触,容易引起人工关节的磨损,进而导致无菌性松动及失效,基于天然软骨结构及天然关节接触形式,仿生制造新型软-软界面的人工关节是解决人工关节磨损和无菌性松动问题的最佳选择。基于天然软骨的结构、天然关节的摩擦形式及其承载润滑机制,利用定向凝固、磁控导向、定向拉伸、退火法等技术,仿生设计了具有定向结构的各向异性仿生关节软骨材料,优化了定向结构仿生关节软骨材料的制备工艺,研究了定向结构仿生关节软骨材料的孔隙结构,探究了定向结构仿生关节软骨材料的力学性能,揭示了定向结构对仿生关节软骨材料性能的影响规律。建立了仿生关节软骨材料的流-固耦合模型,提出了仿生关节软骨材料的流-固耦合承载机制,构建了动态力学观测系统,开展了动态力学状态下仿生关节软骨材料的力学承载研究,获得了仿生关节软骨的结构与其力学承载之间的关系。构建了高可靠性、长寿命的软-软摩擦界面,开展了仿生关节软骨材料的生物摩擦学行为研究,探究了在不同摩擦形式下仿生关节软骨材料的摩擦学性能,揭示了仿生关节软骨材料的摩擦机理;建立仿生关节软骨材料软-软摩擦界面的多孔介质流-固耦合模型,揭示软-软摩擦界面的孔隙渗透机制,阐明仿生关节软骨材料软-软摩擦界面的流-固耦合承载润滑机制。建立仿生关节软骨材料软-软摩擦界面的生物力学、生物摩擦学基础理论。为根本解决仿生关节软骨材料磨损失效问题提供基础理论,最终为制造高可靠性、长寿命的软-软摩擦界面仿生关节提供理论基础及技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
近 40 年米兰绿洲农用地变化及其生态承载力研究
仿生自修复水基润滑关节软骨及其自修复和摩擦机理研究
仿生关节软骨层的设计、构建与性能研究
生物打印构建可缓释干细胞外泌体的多层级仿生支架修复关节软骨损伤研究
纳米颗粒增强关节软骨的仿生摩擦学行为与配副关系研究