Cartilage tissue engineering is an important research direction of articular cartilage defects repair. Cartilage decellularized extracellular matrices(cdECM) has attracted attention because of its similarity with natural cartilage components, but the poor mechanical properties of cdECM and the destruction of bionic structures have limited its application range. In recent years, intra-articular injection of mesenchymal stem cell exosomes (MSCs-Exos) has become one of the most important research directions for the treatment of cartilage defects, but this method has low bioavailability and requires repeated injections. In our previous work, silk fibroin (SF) was used to compensate the low mechanics of collagen, and the bionic cartilage structure was achieved by 3D printing. The effect was excellent and achieved recognition form authorized journal. In addition, we designed a new drug sustained release solution with SF as the core component. Based on the above research background and our work basis, this research intends to 1) study the mechanism and clarify its effect of SF sustained-release drugs, and realize the sustained-release regulation of MSCs-Exos in SF for the first time; and 2) combine SF with cdECM to improve its mechanical properties; 3) perform 3D bioprinting to mimic the multi-layer structure of cartilage. The scaffold can release MSCs-Exos in the cartilage injury area, and promote the regeneration and repair of damaged cartilage by inducing chondrocyte migration, proliferation and providing mechanical and spatial microenvironment for cell metabolism.
组织工程软骨技术是关节软骨损伤修复的重要研究方向。软骨脱细胞基质(cdECM)因具有和天然软骨成分相近的优点而受到关注,但cdECM力学性能差及仿生结构破坏限制了其应用。近年来关节腔注射间充质干细胞外泌体(MSCs-Exos)成为治疗软骨损伤的重要研究方向之一,但此种方法生物利用度低且需要反复注射。我们前期利用3D打印构建了仿生软骨结构的丝素蛋白(SF)/明胶支架,SF弥补了明胶力学不足特性,效果良好;此外我们以SF为核心设计了一套新的药物缓释方案。基于以上背景和基础,本项目拟研究SF缓释药物的机制及规律,首次实现SF对MSCs-Exos的缓释调控;并将SF与cdECM结合改善力学性能;最后通过3D生物打印进行结构重塑,实现对软骨多层级结构的模拟。该支架可在软骨损伤区域定向释放并保留MSCs-Exos,通过诱导软骨细胞迁移、增殖并为细胞代谢提供力学和空间微环境,从而促进损伤软骨再生修复。
组织工程软骨修复技术是关节软骨损伤修复的重要研究方向。本项目通过研究丝素蛋白(SF)缓释药物的机制及规律,实现SF对干细胞外泌体(MSCs-Exos)的缓释调控;并以SF为材料核心构建多层级仿生支架。本课题组提出的可控释生物因子的丝素蛋白支架具有广泛应用前景,可将其用于在关节腔内释放间充质干细胞来源的外泌体,提升关节软骨损伤修复效果。通过退火自组装实现了丝素蛋白冷冻海绵支架,在体外验证了其可控释外泌体的特性,并验证了在裸鼠皮下缓释效果,对比传统支架组与纤维蛋白胶组缓释效果,SF冷冻海绵组体内外泌体可保留两个月,并表现出更好的新生血管和组织生长效果。关节软骨损伤修复仍是目前临床难以解决的问题之一,本研究的多层级仿生支架构建实现了对软骨多层级结构的模拟;并可在软骨损伤区域定向释放并保留MSCs-Exos,通过诱导软骨细胞迁移、增殖并为细胞代谢提供力学和空间微环境,从而促进损伤软骨再生修复。本研究提出的新型生物仿生支架在软骨缺损治疗方面具有前景,为后续研究奠定了良好的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
坚果破壳取仁与包装生产线控制系统设计
面向云工作流安全的任务调度方法
缓释炎症诱导性外泌体仿生支架促进下颌髁突骨软骨缺损修复及机制研究
光固化水凝胶—干细胞外泌体复合材料修复关节软骨损伤的研究
关节软骨细胞外基质源性生物仿生软骨组织工程支架修复软骨损伤的研究
基于原位软骨成像及3D打印技术构建仿生支架修复软骨缺损的研究