Jerusalem Artichoke (JA), referred to as an energy plant, is appropriate for planting in the desert regions, beaches, and saline and alkaline wastelands. And in China, major breakthroughs have been made in the selection and breeding of salt-tolerant types of JA and the planting in beaches. This proposal has put forward to construct a membrane reactor using microporous membranes that are prepared with polymers immobilized with acidic ionic liquids (ILs) to hydrolysis JA raw powders into fermentable sugars. The research will focus primarily on the designs of chemical structure of ILs and membrane microstructure and their regulating preparations. Several kinds of polymers possessing excellent properties, such as polysulfone, are selected as mmebrne materials to immobilize covalently ILs, then prepared into polymer porous membranes by non-solvent induced phase separation, in order to anchor acidic sites on pores wells and establish the affinity adsorption region for reaction sites on reactants. And a mathematical model which can describe the hydrolysis of JA in this novel reactor will be developed. Our proposal will study in-depth the membrane forming kinetics, structure-activity relationships (microporous structure and chemical structure on pore wells-hydrolysis activity and permeability) and catalysis mechanism, so as to implement the microstructure designs and controllable preparation for performances adjustment, and obtain the needed novel catalytic membrane reactor for high-efficiency, energy-saving and green chemical hydrolysis in bioethanol processes. The research results will supply key technological supports and foundation of the relavent engineering science, simultaneity, promote the developments of membrane microstructure design and controllable preparation for performances adjustment in the interdisciplinary field which combines polymer material science and membrane separation science.
糖基能源植物菊芋适于沙漠、滩涂、盐碱地种植,且我国耐盐菊芋品种选育及滩涂种植已有重要突破。本项目提出构建负载酸性离子液体(ILs)的新型聚合物多孔膜反应器水解菊芋多聚糖为可发酵制乙醇的单糖,研究ILs化学结构和膜微结构设计与性能调控制备。从性能优良的聚砜等材料出发,通过化学键合负载ILs,进而以非溶剂诱导相分离制备负载ILs聚合物多孔膜,以在膜孔道内同时构建酸性位点和利于底物反应中心亲和吸附微环境,建立描述膜反应器水解多聚糖动力学模型。深入研究成膜动力学、膜的构(微孔形态及孔壁面化学结构)-效(水解特性和渗透性能)关系及催化作用机理,以达到对其结构和性能的微观设计和调控制备,获得生物乙醇制备中高效节能绿色化学水解所需的新型催化功能膜和关键工艺。为生物质高效转化为乙醇产品提供关键技术支持和相关工程科学基础,同时,发展聚合物材料和化工膜过程交叉学科独有功能膜微结构设计与性能调控理论和科学方法。
菊芋是一种重要的糖基能源植物,其品种选育及滩涂种植在我国已有重要突破。本项目通过构建负载酸性离子液体(ILs)的新型聚合物多孔膜反应器水解菊芋多聚糖菊粉为可发酵制乙醇的单糖。首先,系统研究了20种离子液体结构、酸性与其催化菊粉水解性能之间的关系,筛选出了性能最优的一种ILs作为催化剂。然后,以聚砜为材料,采用非溶剂诱导相分离(NIPS)方法制备氯甲基化聚砜多孔微球再接枝离子液体的方法,制备了负载ILs聚砜(PSF-ILs)多孔微球,并研究了其催化酯化反应的性能,为催化菊粉水解材料的研究提供了支持。同时,通过远程动态低温等离子体法辅助接枝ILs于聚丙烯纤维膜之上,用以催化菊粉水解,为后续多孔膜的制备奠定了基础。之后,以PSF-ILs为材料,通过NIPS法直接制备了PSF-ILs多孔微球,通过微球结构调控优化了其催化菊粉水解性能,并建立了反应动力学模型,获得了相关模型参数,模型很好地预测了PSF-ILs微球催化菊粉水解性能。进而,以PSF-ILs为膜材料,通过NIPS法制备了多孔膜,并构建膜反应器用以催化菊粉水解,通过研究ILs接枝度(DG-ILs)分别对PSF-ILs膜机械性能及催化性能的影响,发现在这两种性能间存在着博弈“Trade-off”效应。由此提出了将高DG-ILs与低DG-ILs共混制膜的解决方案,其中低DG-ILs的聚砜起到骨架作用,确保了膜的机械性能,高DG-ILs的聚砜由于在相转化过程中,其ILs偏析至膜孔壁面进而强化了膜催化性能,突破了上述“Trade-off”效应。研究发现,通过共混DG-ILs分别为0.31和0.59的PSF-ILs材料所制备的关键性PSF-ILs多孔膜,其催化菊粉水解性能优异,还原糖产率可达88.22%。本项目研究获得了相关催化功能材料及膜的制备方法及其催化工艺条件,对生物质能源的高效转化及功能膜微结构调控提供了重要的理论基础和关键技术支持。在此基础上,作为相关工作的延伸,后续将集中研究构建PSF-ILs多孔固定床及其反应器,深入研究固定床结构与催化性能的构效关系,建立反应动力学模型,更加深入地探索研究新型高效节能、环境友好的生物质绿色化学水解功能材料与工艺。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
气载放射性碘采样测量方法研究进展
多孔材料负载离子液体的功能化设计及对油脂酯交换催化作用
离子液体水解反应萃取精馏过程中的复盐离子液体催化-萃取剂分子设计
离子液体负载型催化材料研究
分级多孔负载离子液体-杂多酸催化剂的自组装制备及其氧化脱硫耦合效应