Pervaporation and vapor permeation process are employed to separate or recover important volatile organic compounds (VOCs) in chemical industry, which is of great importance in energy saving and emission reduction. Based on this background, the design and preparation of olymer membrane materials are selected as a demonstration for design and preparation of new materials for chemical separation processes. In the view of constructing molecules with groups, i.e., methods for membrane material design, which was previously put forward by our.group, and funded by the key NSFC Project (20736003) and six other NSFC Projects. This proposal will focus on the key scientific problem that microstructures of membrane material determine its macroscopic separation performances. By applying density functional theory and molecular simulation to membrane material structure analysis and structural tuning preparation, this project will study the inherent relationships between the multi-level microstructures (group structure, chain morphology and aggregation, and membrane morphologic structure) of membrane and its macroscopic separation performances and investigate microstructure design theory and performance tuning preparation methods, and build the micro channels for the dissolution and diffusion of VOCs molecules in polymer by hybridization using ionic liquids (ILs), metal-organic frameworks (MOFs) and ILs-impregnated MOFs materials. The main aim of this project is to develop specific theory system and scientific method of the interdisciplinary field which combines chemical separations, polymer membrane material design and membrane preparation. The research results could romote the polymer membrane material design for VOCs separation, membrane tuning preparation and relevant applications, so as to make contributions to the technology progress in energy saving, emissions reduction and environmental improvement.
以化工节能生产和挥发性有机物(VOCs)分离、减排回收为研究背景,以渗透汽化(含汽体渗透)膜材料设计调控制备为化工新材料设计调控制备示范,以先期提出的微观基团材料设计思路和已结题国家基金重点项目(20736003)及6项面上项目研究成果为基础,应用膜制备过程动力学理论和分子模拟,结合膜材料结构调控制备技术,抓住膜材料微观结构决定其宏观分离性能这个关键科学问题,申请人提出研究膜微观基团、链形态及聚集态和膜形态等微结构与其宏观分离性能间的内在联系,研究膜材料多层次微结构设计理论及其性能调控制备方法,着重以离子液体、金属-有机框架材料及其嵌载离子液体的纳米粒子在聚合物中构建适宜于VOCs分子溶解扩散传递的微相通道,发展化工膜分离过程和渗透汽化膜材料设计与制备交叉学科独有的理论体系和科学方法,以此为提升我国VOCs分离膜材料设计、调控制备与应用水平,进而为推动节能减排与环境治理技术进步做贡献。
针对国家节能减排和大气环境治理的重大需求,以渗透汽化分离膜与膜过程为研究对象,以挥发性有机物(VOCs)分离与回收为化工分离体系,项目提出了“聚合物膜多层次微结构(微观基团结构、微通道结构、链形态及聚集态和膜物理形态)设计、制备与性能调控”的思想,结合溶解-扩散理论、分子模拟手段、材料结构分析和调控制备技术,系统深入地开展了膜材料与小分子相互作用模拟计算、膜内有机分子高效溶解扩散通道构建、离子液体强化混合基质膜分离性能、膜表面形貌调控强化分离性能、高柔性MOF纳米片膜设计与制备、膜材料中分子传质行为的模拟、以及膜生物反应器制备生物乙醇等七个方面研究。从而,构建了膜材料分子模型,发展了膜材料与小分子相互作用模拟计算方法;提出了膜内相对连续分子通道的思想,以其指导构建了一系列膜内高效分子传递通道;解决了成膜过程中IL聚集影响成膜的关键瓶颈,实现了膜内固载IL强化混合基质膜分离性能的目标;以膜表面形貌调控手段显著强化了膜分离性能;设计制备出了一种高柔性超疏水MOF纳米片复合膜,突破了柔性MOF膜的制备瓶颈;较系统的模拟计算了膜材料中分子传质行为,揭示了膜分离机理;构建了一种蒸汽渗透膜原位分离耦合生物发酵的系统。项目的实施发展了以基团构建分子为基础的化工分离新膜材料多层次微结构设计理论,并形成了有特色的系列膜性能调控制备方法,为提升我国VOCs分离膜材料设计、调控制备与应用水平,进而为推动节能减排与环境治理技术进步做出了贡献。在Science,J. Membr. Sci.,AIChE J.和Chem. Eng. J.等期刊以第一标注发表SCI收录论文29篇;即将出版学术专著1部;申请国家发明专利5项,授权3项;协办一届“全国膜与膜过程学术报告会”,共同承办三届“京津冀地区研究生膜技术论坛”。1人获“2020年北京膜学会杰出青年成果奖”。培养博士后2人,博士生9人,硕士生15人。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
化工分离聚合物新膜材料设计与膜(产品)制备基础研究
化工新材料的纳微结构及其制备和性能研究
聚乙烯醇/氮化碳渗透汽化透水膜的微结构调控与分离机制
含水通道蛋白磷脂仿生正渗透膜的设计制备与分离机理研究