Clean utilization of fossil fuels is one of the advanced subjects highlighted by National Program for Medium-to-Long-Term Scientific and Technological Development (2006-2020). Development of high-quality catalysts for deep oxidative desulfurization is a key issue for solving the atmospheric pollution and upgrading the fuel technologies in our country. Proposals of this research are improving the sulfide diffusion and adsortion on the active area in the catalyst with a hierarchical porous structure, and constructing both adsorptive and catalytic sites on the active area of the catalysts. The adsorptive sites can be constructed by ionic liquids, while the catalytic sites can be constructed by heteropolyacids and Lewis acids. Technically, we propose synthesize the porous Lewis acid oxides supported heteropolyacids-ionic liquids catalysts with a multiphase self-assembly from electrostatic self-assembly between negatively charged heteropolyacids-ionic liquids and positively charged Lewis acid, then Hydrogen-bonding self-assembly to surfactant to form a heteropolyacids-ionic liquids enriched active surface. The hierarchical porous strcuture can be constructed with the presence of ordered microspheres template and auxiliary surfactant. The research will also pay attention to study the controllable formation technologies for catalyst with desighed porosity, morphologies and chemical strure, and understand the structure-activity relationships between the catalystic activity and the structures of catalyst. The results will provide theoretical basis and technical supports for the development deep oxidative desulfurization catalyst with low cost and high efficency.
化石燃料的清洁利用是《国家中长期科技发展规划纲要(2006-2020年)》明确优先发展的重要科学领域。开发高效的燃油深度氧化脱硫技术是解决我国当前大气环境关键问题、促进燃油工业产业升级的重要课题。本项目拟通过对分级多孔结构的传质吸附构效关系及其材料制备技术、杂多酸/Lewis酸的选择氧化催化与离子液体对硫化物的选择吸附相互协同作用的探索,采用杂多酸、离子液体-嵌段聚合物表面活性剂-Lewis酸前驱体的多相同步自组装技术开发杂多酸、离子液体在Lewis 酸无机氧化物孔壁界面富集的兼具催化反应活性位和选择吸附位的深度氧化脱硫催化剂,并采用有序微球模板和助表面活性剂构建催化活性表面的大孔-介孔有序分级孔结构,促进梯度毛细管力辅助硫化物在反应活性位的快速聚集和催化,从而开发高效率的低成本分级多孔传质结构纳米复合催化剂,为大幅度提升氧化脱硫效率提供理论依据和技术支撑。
化石燃料的清洁利用是《国家中长期科技发展规划纲要(2006-2020年)》明确优先发展的重要科学领域。开发高效的燃油深度氧化脱硫技术是解决我国当前大气环境关键问题、促进燃油工业产业升级的重要课题。本项目拟通过对分级多孔结构的传质吸附构效关系及其材料制备技术、杂多酸/Lewis酸的选择氧化催化与离子液体对硫化物的选择吸附相互协同作用的探索,采用杂多酸、离子液体-嵌段聚合物表面活性剂-Lewis 酸前驱体的多相同步自组装技术开发杂多酸、离子液体在Lewis酸无机氧化物孔壁界面富集的兼具催化反应活性位和选择吸附位的深度氧化脱硫催化剂,并采用有序微球模板和助表面活性剂构建催化活性表面的大孔-介孔有序分级孔结构,促进梯度毛细管力辅助硫化物在反应活性位的快速聚集和催化,从而开发高效率的低成本分级多孔传质结构纳米复合催化剂,为大幅度提升氧化脱硫效率提供理论依据和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
2016年夏秋季南极布兰斯菲尔德海峡威氏棘冰鱼脂肪酸组成及其食性指示研究
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
杂多酸型离子液体的设计及其在燃料油氧化脱硫中的基础研究
杂多化合物-离子液体双催化剂的柴油深度氧化脱硫协同作用的研究
核壳结构磁性纳米颗粒负载的杂多酸离子液体:设计及其催化应用
多酸型多孔聚离子液体用于活化空气氧化燃油超深度脱硫的研究