针对要研究的随机无限经济问题,在不假设效用函数存在的情况下,系统地建立一套与不完全偏好相一致的数学理论和方法,例如序方法(包括序空间中的极值原理和不动点定理)、经济优化和随机分析方法,等等,以此作为本项目的理论基础和研究工具;然后,分别研究不完全偏好下含不确定市场结构的无限经济均衡与经济最优配置的存在性、以及基于不完全偏好的金融资产定价和风险度量等问题,并给出实证分析和检验..由于本项目不再假设或者使用效用函数,而是通过提出不完全偏好的概念来改进已有经济理论中的前提公理假设,并系统地提出一套新的数学理论和方法来研究有关经济金融问题,因此,本项目具有很大的普遍性、创新性和应用性.
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
黄河流域水资源利用时空演变特征及驱动要素
拥堵路网交通流均衡分配模型
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
局部域上的随机分形及其在经济问题中的应用
不完全犹豫偏好关系的群决策理论与应用
无限维正倒向随机系统: 理论与应用
独立随机不完全配对:理论与应用