在Ahlfors,Bers等数学家的倡导下,现在Teichmuller空间受到了大家广泛的关注。本项目Teichmuller空间及其应用包含两个方面的内容:.1:在给定条件下,研究穿孔黎曼曲面上带二阶极点的Jenkins-Strebel微分的存在唯一性及其几何性状;并且研究此类二次微分在二次微分空间的稠密性。.2: 研究平面上的六边形的Circle Packing的刚性常数的精细估计,并试图给出它的完全展开式;我们还将研究2重极值circle packing的几何性质。.以上几个部分和Teichmuller空间、Kleinian群、单叶函数和离散几何等分支有着紧密联系,开展深入研究对其他分支的发展有着重要影响。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
多空间交互协同过滤推荐
卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比
近代租界城市日常空间生产与演化 以天津英租界休闲空间为例
Teichmuller空间理论中的若干问题及其应用
万有Teichmuller空间与渐近Teichmuller空间的相关问题
TEICHMULLER空间(台希米尔空间)
拟共形Teichmuller空间及其在复动力系统中的应用