Global warming and energy crisis are the two great challenges of the 21st century,and both of them are associated with the use of unsustainable fossil fuels and the release of greenhouse gases, e.g., CO2. The conversion of CO2 to renewable fuels and/or fine chemicals may provide new solutions for not only reducing the greenhouse gas emissions but also dealing with the energy crisis. Among the various approaches to convert CO2, electrocatalytic technology is featured with the merits such as moderate reaction condition and easily tuned process, and thus has attracted broad research interest. The development of new catalytic electrode materials has been illustrated to be the key in the advance of electrocatalytic technology for CO2 reduction. Superior to the conventional electrode materials, diamond has a wide electrochemical potential window, low back ground current, and excellent chemical and mechanical stabilities. In this project, we will prepare boron and nitrogen co-doped diamond nanostructure arrays by combining microwave plasma chemical vapor deposition and reactive ion etching, and study their electrocatalytic properties in CO2 reduction. Through investigating the effects of boron and nitrogen doping levels, and the morphology, density, aspect ratio, and specific surface area of different diamond nanostructure arrays on the electrocatalytic performance in CO2 reduction, the reaction mechanism and coordination effects of the codoping-induced catalytic active centers on diamond surface and the field reactant concentration effect associated with the nanostructured arrays will be explored. Implementation of this project will provide theoretical basis and experimental guideline for the development of novel diamond-based catalytic electrodes.
全球气候变暖和能源危机是21世纪我们面临的两大问题,而它们都与不可再生的化石燃料的消耗及温室气体CO2的释放直接相关。将CO2转化为可再生燃料不但能减轻温室效应同时也为解决能源危机提供新的方向。由于电化学还原CO2技术具有反应条件温和、过程易控等优势,成为近年的研究热点,而新型催化电极材料的研制是该技术发展的核心。和传统电极材料相比,金刚石具有电势窗口宽、背景电流小及化学与机械性能稳定等优点。本项目拟利用微波等离子体化学气相沉积和反应离子蚀刻法制备硼氮共掺杂金刚石纳米结构阵列,并研究其电催化还原CO2性能。通过系统研究硼、氮原子掺杂量及金刚石纳米结构阵列的形貌、密度、纵横比、比表面积等因素对CO2还原性能的影响,揭示硼氮共掺杂在金刚石表面引入的催化活性中心与阵列结构的场致反应物浓缩效应在CO2电催化过程中的反应机理及协同作用。本项目的研究将为新型金刚石电极材料的开发提供理论依据及实验基础。
电化学还原CO2技术具有反应条件温和、过程易控等优势,成为近年的研究热点,而新型催化电极材料的研制是该技术发展的核心。和传统电极材料相比,金刚石具有电势窗口宽、背景电流小及化学与机械性能稳定等优点。本项目利用微波等离子体化学气相沉积和反应离子蚀刻法制备了掺杂金刚石纳米薄膜和阵列结构电极,并研究了其电催化还原CO2性能,探索了掺杂及纳米结构等因素对CO2还原性能的影响,揭示了金刚石表面引入的催化活性中心与阵列结构的协同效应。进一步设计开发了其他类型的非贵金属电催化剂和新型储能器件。本项目按计划实施,完成了研究目标。通过该项目的支持,目前已发表SCI论文16篇,包括Adv. Mater. (1篇)、 Adv. Energy Mater.(1篇)、Adv. Funct. Mater.(2篇)、ACS Energy Lett. (1篇)、Appl. Catal. B-Environ.(1篇)、Small(1 篇)、J. Mater. Chem. A(5篇)、Mater. Today Energy (2篇)等。获授权美国专利一项。后续研究还在进行中。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
瞬态波位移场计算方法在相控阵声场模拟中的实验验证
叶酸基金属和氮共掺杂碳材料的可控制备及其电催化还原CO2研究
过渡族金属、氮共掺杂芯壳结构纳米碳纤维的制备及电催化性能研究
Cu(CuM)-MOx/氮掺杂多孔碳纳米线球的组装及其对CO2电催化还原高效产丙醇性能
过渡金属单原子负载氮掺杂多孔碳材料的结构设计及电催化还原CO2性能研究