Electrochemical decomposition of water is an important pathway for the development and utilization of hydrogen energy, and the use of electrocatalysts is a key for the efficient electrolysis of water. The current electrocatalysts for water splitting are mostly made from the precious metals. However, the limitation in material resource, high cost, and as well as relatively low efficiency seriously hamper their practical applications. The development of new cost-efficient electrocatalysts has thus important scientific significance and applicable value. This project aims to design and synthesis of low-cost two-dimensional transition metal oxyhydroxide nanomaterials, and based on that to develop new high-efficiency water splitting system. The two-dimensional transition metal oxyhydroxide nanomaterials will be synthesized in a controlled way by using the mild oxygen oxidation approach with the assistance of surfactant template, and their electrocatalytic activity for water splitting will be studied. The dependence of the crystal phase, exposed crystal facet and thickness of two-dimensional oxyhydroxide nanosheets on the preparation conditions will be investigated systematically. By studying the impacts of the factors, such as surface construction and electronic structure induced by the two-dimensional topography, and the conductivity and specific surface area of the three-dimensional scaffold, on the catalytic activity, the structure-activity relationship and catalytic mechanism will be revealed. Implementation of this project will provide theoretical basis and experimental guideline for the development of novel transition metal based catalytic electrodes.
电催化分解水是开发利用氢能源的重要途径,而电催化剂的应用是实现高效电解水的关键。现有的电催化剂以贵金属及其化合物为主,存在材料单一、成本高、效率较低等问题,极大地限制了它们的实际应用,因此研发新型低成本的高效电催化剂具有重要的科学意义和应用价值。本项目拟设计与合成低成本的二维过渡金属羟基氧化物纳米材料,构建高效的新型电催化分解水体系。实验中将利用温和的表面活性剂模板辅助下氧气氧化法实现二维过渡金属羟基氧化物纳米材料的可控合成,并研究其电催化分解水性能。我们将系统地分析合成过程中二维羟基氧化物的晶相、暴露晶面以及厚度等参数的调控规律,并深入研究二维结构特征所引起的材料表面结构、电子结构的变化以及功能载体的导电性、比表面积对电极体系电催化性质的影响,揭示电催化剂的构效关系,阐明反应机理。本项目的实施将为新型过渡金属基水分解催化电极的开发提供理论依据及实验基础。
电催化分解水是开发利用氢能源的重要途径,而电催化剂的应用是实现高效电解水的关键。现有的电催化剂以贵金属及其化合物为主,存在材料单一、成本高、效率较低等问题,极大地限制了它们的实际应用,因此研发新型低成本的高效电催化剂具有重要的科学意义和应用价值。本项目设计与合成了低成本的过渡金属羟基氧化物、硒化物、氮化物、合金等纳米材料,构建了高效的新型电催化分解水体系,重点研究了二维纳米片电子结构与电催化性能的构效关系,在原子层面揭示电催化剂分解水活性中心及性能调控机理。此外,我们还开发了新型、高效、廉价的超级电容器和电池器件,以及研究了纳米金刚石材料的电催化及力学特性。本项目按计划实施,完成了研究目标。通过该项目的支持,目前已发表SCI论文23篇,包括Science(1篇)、Chem. Soc. Rev.(1篇)、 Adv. Mater. (3篇)、 Adv. Energy Mater.(3篇)、ACS Energy Lett. (1篇)、Adv. Sci.(1篇)、Small(2篇)、J. Mater. Chem. A(6篇)、Chem. Eng. J. (1篇)等。申请发明专利2项,包括一项美国专利。后续研究还在进行中。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
二维过渡金属纳米材料的设计合成及电催化分解水性能研究
水滑石超薄二维材料的可控制备及其电催化分解水性能研究
氧空位过渡金属氧化物/稀土二维复合材料的可控制备及电容特性
二维超薄过渡金属基材料可控制备及其在聚氨酯中阻燃和可持续循环研究