The electrowetting-actuated liquid lens is one of the hot research fields in lightweight imaging because of its advantages of adjustable focal length, fast response and easy to be photoelectric integrated. The artificial bionic compound eye lens is also one of the popular researches in bionics. This project focuses to study the problems of the compound eye such as low imaging quality, existing a field of blind area and difficulty to focus on the same image plane. This project proposes to combine the graphene conductive film based electrowetting liquid microlens array and the compound eye together. We will first research the relationships between the property of the dielectric layer with driving voltage and study the mechanism of the high optical property microlens. Then, we will construct the 360° full field liquid microlens model. Based on this structure, the graphene film will be prepared by laser ablation and it will be fabricated with the liquid microlens. Finally, based on the different driving modes of the graphene film, we propose a variable focus, no blind area compound eye. This project is expected to reveal the physical principle of low voltage driving and fast response of the electrowetting liquid microlens, to mater an assembly technology between the graphene film and liquid microlens, to master the bionic compound eye uniformity focusing method. This project can be widely used in the fields such as military, lighting and visual imaging. And it will also promote the development of optical imaging technology, especially lightweight imaging technology.
电润湿驱动的液体透镜具有可变焦、响应快速、易于光电集成等优点,是轻量化成像领域的研究热点;人工仿生复眼也是当今仿生学的热门研究方向之一。本项目针对仿生复眼成像质量较差、存在视场盲区和焦距固定难以实现同平面聚焦等问题进行深入研究。项目拟将基于石墨烯薄膜的电润湿液体透镜和复眼成像技术相结合,首先研究介质层物化属性同驱动电压之间的制约关系,探索高光学性能液体变焦微透镜的实现机理;其次,构建360°全景视场的液体微透镜阵列模型,依此结构激光刻蚀石墨烯薄膜并同液体微透镜进行装配;最后根据石墨烯薄膜的驱动模式,研制可变焦、无视场盲区的仿生复眼。本项目预期揭示电润湿液体微透镜低压快速驱动的物理机理;掌握石墨烯薄膜同液体微透镜的装配工艺;掌握仿生复眼的同平面聚焦方法。本项目研制的仿生复眼可广泛应用于军事、照明和视觉成像等领域,该研究也将推动光学成像技术尤其是轻量化成像技术的发展。
电润湿驱动的液体透镜具有可调焦、响应快速、易于光电集成等优点,是轻量化成像领域的研究热点;人工仿生复眼也是当今仿生学的热门研究方向之一。本项目针对仿生复眼成像质量较差、存在视场盲区、且焦距固定难以实现同平面聚焦等问题进行深入研究。在电润湿液体透镜方面:深入研究了介质层物化属性同驱动电压的制约关系,配置电润湿液体无水配方,密度介于1.20 g/cm3-1.40 g/cm3,折射率介于1.2-1.5;探索高光学性能液体变焦微透镜的实现机理,研究了在非均匀介质层下电润湿微观驱动模型,基于该模型,研制了电润湿液体透镜,正负焦距分别为50mm和-30mm;基于环形微棱台结构,研制了高稳定电润湿液体透镜,控制锚定接触角范围为92°-136°;基于Qt开发平台,研制了液体透镜驱动板,可实现阵列化液体透镜/微透镜驱动。在石墨烯薄膜研制装配方面:采用抽滤的方法制备氧化石墨烯(GO)薄膜和AuNRs/GO复合薄膜基底依此结构激光刻蚀石墨烯薄膜并同液体微透镜进行装配。在全景视场复眼成像系统方面:以Multi-scale设计理论为基础,结合电润湿液体透镜的连续变焦理论,形成了有限共轭条件下连续变焦复眼成像系统模型。系统的主要成像部分由中继镜头和液体复眼构成,所研制成像系统可以实现100mm以上的无机械移动连续对焦,也可以在定工作距的条件下实现2倍变倍比的连续变倍成像,通过对七路子视场形成的图像进行拼接可以获得不低于45°的总视场。本项目揭示了电润湿液体微透镜低压快速驱动的物理机理;掌握石墨烯薄膜同液体微透镜的装配工艺;掌握仿生复眼的同平面聚焦方法。本项目研制仿生复眼可广泛应用于军事、照明、视觉成像等领域,该研究也将推动光学成像技术尤其是轻量化成像技术的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
混采地震数据高效高精度分离处理方法研究进展
不同交易收费类型组合的电商平台 双边定价及影响研究
用于运动目标跟踪的变焦仿生复眼系统研究
基于石墨烯的透明导电薄膜及其原型器件的研究
石墨烯的控制生长及其导电薄膜器件
电沉积制备石墨烯/导电聚合物复合薄膜电极材料及其电容特性