Deep buried water diversion tunnel is an important means to utilize water resources efficiently, it is urgent to solve the problem of the long-term safety of surrounding rock-support system of tunnel main body in long-distance water diversion project. The research is based on the long-term safety of the surrounding rock-support system of deep buried water diversion tunnel of Jinping cascade 2. With the method of combining physical model test, theoretical analysis, numerical simulation and in-situ real-time perception and monitoring. The project focuses on three key problems shown as follows. 1) long-term performance prediction and control method of surrounding rock-support system of long deep buried tunnel under changing environment condition; 2) real-time perception technology and analysis method of failure process of surrounding rock-support system in long deep buried tunnel; 3) long term safety evaluation and control method of tunnel under cyclic internal and external water pressure. Through the research of this project, the damage evolution and failure mechanism of the surrounding rock-support system of long deep buried tunnel under the combined action of internal and external water pressure are revealed, a non-contact real-time intelligent detection system that can walk and locate in the flowing water for detecting the damage and abnormal deformation of surrounding rock and lining support system of long deep buried tunnel is developed, a dynamic long-term safety assessment and control method of surrounding rock-support system suitable for deep buried tunnel under internal and external high water pressure environment is proposed, providing scientific basis and technical support for safe and efficient operation of long deep buried tunnel under complicated conditions.
深埋引水隧洞作为高效利用水资源的重要手段,隧洞主体围岩-支护结构长期安全性是长距离引水工程亟需解决的问题。本项目以锦屏二级深埋引水隧洞的长期安全性为研究背景,采用物理模型试验、理论分析、数值模拟、现场实时感知与监测相结合的方法,重点解决1)深埋长隧洞围岩-支护结构在环境变化条件下的长期性能预测和控制方法;2)长大深埋隧洞围岩-支护结构破坏过程的实时感知技术与分析方法;3)循环内外水压作用下隧洞长期安全性评价与控制方法三方面的核心问题。通过本项目的研究,揭示深埋长隧洞围岩-支护结构在内外水压共同作用下的损伤演化和失效破坏机制,研发可以在动水中行走和定位、用于检测深埋长隧洞围岩与衬砌支护结构损伤和异常变形的无接触实时智能检测系统,提出适用于深埋内外高水压环境的隧洞围岩-支护系统的长期安全性动态评价与控制方法,为复杂条件下深埋长隧洞的安全高效运行提供科学依据和技术支撑。
深埋引水隧洞是高效利用水资源的重要手段,我国引水隧洞建设规模最大、数量最多、运行环境极为复杂,隧洞主体围岩-支护结构长期安全性是长距离引水工程亟需解决的问题。本项目以锦屏二级深埋引水隧洞为研究背景,综合运用现场调研、室内试验、理论分析、数值仿真等多种手段,围绕深埋隧洞赋存环境变化条件下围岩-支护系统长期性能劣化机理、深埋隧洞围岩-支护结构破坏过程的感知技术与分析方法、引水隧洞长期安全性评价三方面开展了深入研究,取得的主要创新成果包括:(1)研发了岩石剪切渗流-应力耦合试验装置,建立了深埋引水隧洞岩体结构-应力-渗流演化的连续-非连续分析方法,揭示了高围压高渗压、内外水交互、渗流-应力耦合、循环往复荷载作用等复杂运行环境条件下深埋引水隧洞围岩-支护系统的渗流力学特性及长期性能劣化机理;(2)提出了基于有限监测数据的围岩-支护结构损伤识别和性态预测方法,开发了基于三维激光扫描和三维数字图像的以小波包能量为特征量的混凝土结构微损伤识水下非接触式检测方法,发展了围岩-支护结构损伤破坏感知技术;(3)建立了深埋引水隧洞围岩-支护结构破坏现象和成因分类方法,提出了基于张拉-剪切破坏接近度理论的围岩-支护系统的长期安全性评价方法,开发了基于可靠度理论的水工隧洞围岩支护智能评价软件和基于BIM技术的引水隧洞结构安全评价系统。在国内外学术期刊上发表学术论文98篇,其中SCI论文51篇、EI论文9篇,授权国家发明专利11项、软件著作权2项,参编标准1项,培养博士后2名、研究生31名,获省部级技术发明一等奖和科技进步二等奖各1项。相关成果可为复杂条件下深埋长隧洞的安全高效运行提供科学依据和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
深埋长大引水隧洞和洞室群的安全与预测研究
深埋长大引水隧洞和洞室群安全监测光纤传感技术与预测方法
深埋隧洞围岩安全性的超声评价理论及应用研究
深埋引水隧洞围岩-支护系统长时力学特性及安全性评价与控制研究