若干生物过程的发展方程研究

基本信息
批准号:11571070
项目类别:面上项目
资助金额:45.00
负责人:陶有山
学科分类:
依托单位:东华大学
批准年份:2015
结题年份:2019
起止时间:2016-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:吴志刚,杜玲珑,刘冬梅,胡炳然
关键词:
大时间行为带间接信号的chemotaxis模型chemotaxishaptotaxis模型chemotaxisStokes模型新奇的临界质量现象
结项摘要

This project focuses on the study of three new models or new problems arising from significant biological processes. Motivated by the aggregative behavior of the Mountain Pine Beetle in forest habitat, we investigate a novel type of critical mass phenomenon for infinite-time blow-up in a chemotaxis model with indirect signal production. We next qualitatively deal with the global existence, boundedness and large time behavior of solutions to the Keller-Segel-Stokes model, which describes the interaction between chemotaxis and a flowing fluid in the circumstance of broadcast coral spawning. We also explore the asymptotic behavior of bounded solutions to a coupled chemotaxis-haptotaxis model addressing the process of cancer invasion of neighboring healthy tissue. An essential challenge of this proposal lies in the lack of available approaches for the aforementioned three new problems. This program aims at achieving some new progress or breakthrough in the theoretical study of the aforesaid problems.

本项目主要研究三个重要生物过程的新模型或新问题。由森林中山松甲虫的聚集行为所驱动,我们研究具间接信号产出的chemotaxis模型解的无限时间爆破的新临界质量现象。其次,定性分析描述“珊瑚四散产卵现象”中趋化性与流体相互作用的Keller-Segel-Stokes模型古典解的整体存在性、有界性和大时间行为。我们还探索刻画癌细胞浸润其周围正常组织过程的耦合的chemotaxis-haptotaxis模型有界解的渐近性态。以上三个新问题目前缺少有效的研究方法,这成为本课题的难点所在。本项目旨在这几个问题的理论研究上取得新进展或突破。

项目摘要

本项目主要研究了四个重要生物过程的新模型。首先严格证明了刻画森林中山松甲虫聚集行为的、具间接信号产出的chemotaxis模型的解在无限时间爆破的新临界质量现象。其次,建立了描述“珊瑚四散产卵现象”中趋化性与流体相互作用的Keller-Segel-Stokes模型古典解的研究框架、给出了一些基本先验估计技巧,探讨了整体解存在性、有界性和大时间行为。还分析了反映癌细胞浸润其周围正常组织过程的耦合的chemotaxis-haptotaxis模型有界解的渐近性态,以及非线性信号产出对解定性性质的影响。除上面本项目原计划研究的三个模型外,又新增研究了由细菌“自俘机制”而导致细菌运动“条状图案”的生成所驱动而提出的细胞运动率依赖于信号密度的Keller-Segel趋化模型,我们的理论分析表明:与经典的Keller-Segel模型显著不同, 对任何合适正则的大初始数据和合适的运动率函数,该新模型的解在二维空间不可能产生任何爆破现象!本项目的研究成果均发表在有影响的国际数学期刊如JEMS、SIMA、M3AS、JDE等上,共发表受此项目(11571070)资助作为第一标注的论文16篇;获得上海市自然科学三等奖1项。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
2

中国参与全球价值链的环境效应分析

中国参与全球价值链的环境效应分析

DOI:10.12062/cpre.20181019
发表时间:2019
3

基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例

基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例

DOI:
发表时间:2022
4

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
5

钢筋混凝土带翼缘剪力墙破坏机理研究

钢筋混凝土带翼缘剪力墙破坏机理研究

DOI:10.15986/j.1006-7930.2017.06.014
发表时间:2017

陶有山的其他基金

批准号:11171061
批准年份:2011
资助金额:45.00
项目类别:面上项目
批准号:10571023
批准年份:2005
资助金额:24.00
项目类别:面上项目

相似国自然基金

1

生物医学中若干发展方程的研究

批准号:11171061
批准年份:2011
负责人:陶有山
学科分类:A0304
资助金额:45.00
项目类别:面上项目
2

若干几何发展方程的研究与应用

批准号:10871069
批准年份:2008
负责人:郑宇
学科分类:A0109
资助金额:22.00
项目类别:面上项目
3

非线性发展方程的若干问题

批准号:19971070
批准年份:1999
负责人:赵俊宁
学科分类:A0304
资助金额:8.00
项目类别:面上项目
4

若干非线性发展方程行波解的研究

批准号:11671155
批准年份:2016
负责人:黄锐
学科分类:A0304
资助金额:48.00
项目类别:面上项目