Aiming at the heavy load-supporting and high-speed locomotor characteristics of ostrich didactyl foot on sand, the research methods of combination of morphology and structure analyses and physical mechanical experiments, combination of realistic experimental tests and virtual numerical simulations, combination of biological mechanism analyses and bionic design of products were adopted. The adaptive locomotor mechanism of ostrich foot on sand was studied from the aspects of morphology, structure and locomotor patterns of ostrich foot. Regarding the increase of carrying capacity and moving speed as the optimized objective, the bionic walking wheel in sand terrain was studied based on the biological prototype of ostrich foot. The project provided the important theoretical foundations and research methods for the bionic engineering applications of the predominant characteristics of ostrich foot traveling on sand. The research emphases includes the analysis of the effects of curve surface and papillary group of ostrich foot traveling on sand, the study of the heavy load-supporting and vibration-reduced mechanism of ostrich foot structure, the establishments of the kinematical model and the dynamic stress distribution model of ostrich foot traveling on sand, the optimization of the typical series of the high-speed locomotor patterns of ostrich foot on sand, the obtainment of the multi-factor heavy load-supporting and high-speed locomotor mechanism of ostrich foot on sand, the establishment of the biological information factor database with the heavy load-supporting and high-speed locomotor characteristics of ostrich foot on sand, and the bionic design of the walking wheel in the terrain. The project covers animal anatomy, ethology and soft terramechanics. In the first time, the heavy load-supporting and high-speed locomotor mechanism of ostrich foot on sand was studied from the aspects of ostrich foot itself and the interaction between ostrich foot and sand. The research has the important significance for the in-depth study of the theory and the technology of bionic walking machine on soft terrain.
本项目瞄准鸵鸟二趾足重载与高速越沙特性,采用形貌结构分析与物理力学实验相结合,现实实验测试与虚拟数值模拟相结合,生物机理分析与产品仿生设计相结合的研究方法,从形貌、结构及运动形态角度研究鸵鸟足自适应越沙机制,并以鸵鸟足为生物原型,以提高载重量和运行速度为优化目标,进行越沙步行轮仿生研究,为鸵鸟足优越越沙性能的工程仿生学应用提供了重要理论依据和研究方法。研究重点包括:分析鸵鸟足底曲面及乳突群越沙效应;研究鸵鸟足结构重载减震机制;建立鸵鸟足越沙运动学模型和足底压力动态分布模型;优化鸵鸟足高速越沙典型运动形态组合;给出鸵鸟足多因素重载高速越沙机制;建立鸵鸟足重载高速越沙性能的生物信息因素数据库;进行越沙步行轮仿生设计。本项目涵盖动物解剖学、动物行为学及松软地面力学,首次从鸵鸟足本身及鸵鸟足/沙土相互作用方面探索鸵鸟足重载高速越沙机制,对于松软地面机械仿生行走理论和技术的深入研究具有重要意义。
鸵鸟是沙地环境中现存最大最重、奔跑速度最快的两条腿动物。鸵鸟二趾足承载鸵鸟体重,直接与沙土接触并参与运动。基于鸵鸟足重载与高速越沙特性,从鸵鸟足形貌、结构、运动形态、生物组织及骨肌组装角度,研究出鸵鸟足趾甲固着牵引影响因素、鸵鸟足底曲面越沙机理、鸵鸟足底乳突附着沙土效应、鸵鸟足骨肌系统重载减震机制、鸵鸟足跖趾关节缓冲储能机制、鸵鸟足趾缓冲垫缓冲机理以及鸵鸟足自适应越沙运动形态特性。给出了鸵鸟足越沙运动学和力学规律及模型,建立了鸵鸟足越沙离散元数值模拟方法,优化出鸵鸟足高效典型运动形态组合,归纳出鸵鸟足多因素耦合重载高速越沙特性影响因素。同时,基于沙地通过性、行驶振动性及重载特性,以鸵鸟足为生物原型,采用工程仿生技术,研制出高牵引仿生轮刺式刚性轮、高通过性火星巡视器仿生鼓形车轮、仿生低振越沙步行轮、仿生重载高滑转越沙步行轮以及自适应仿生越沙步行轮。本项目研究增强了松软地面机械仿生行走理论和技术基础,相关仿生越沙轮研制在沙漠环境的军事、旅游及探矿移动车辆或平台,以及月球及火星深空巡视探测器上具有潜在应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
特斯拉涡轮机运行性能研究综述
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
中国参与全球价值链的环境效应分析
鸵鸟腿足生物组装与协同运动策略及松软地面高效平稳仿生步行机械腿关键技术
戈壁大风区高速铁路输沙导沙研究
环鄱阳湖区水田微耕机仿生步行轮设计及轮壤模型研究
仿生沙基机器人二维运动C形腿数学模型的建立及自适应控制的研究