The hypersonic vehicle during down-attack phase faces several typical problems, such as strong disturbances, fast parameter variations and more design restrictions, along with the obvious collaboration requirement between fast maneuverability and strong stability. Aiming at the above-mentioned problems, a kind of intelligent adaptive integrated guidance and control method is studied, in order to break up the limitation of smaller application envelope resulted from the existing methods, and then to improve the strick precision and the adaptability of future hypersonic vehicle in China. On the basis of mathematical modeling on hypersonic vehicle, this project gives a analyse method to measure coupling degree between the mass-center motion and the motion around mass-center. Furthermore, the integrated design model facing to control is established. Then, a cascade control approach based on finite-time convergence theory is studied and used to establish the preliminary scheme of integrated guidance and control, whose stability is analyzed subsequently. In order to enhance the robustness of flight control system with respect to strong disturbances, a kind of multi-variable disturbance observer is designed, and its output will be regarded as the basis of disturbance compensation. Meanwhile, considering the typical working conditions with respect to big envelope and fast parameter variation, and the actual problem brought by many complicated design restrictions, the fuzzy parameter-updating strategy and the on-line intelligent optimization strategy are successively proposed, in order to realize the intelligent property of integrated guidance and control. Finally, based on the Hammersley-sequence sampling technology, a kind of stochastic robustness analysis approach with higer efficiency is studied, and then applied in the performance evaluation on uncertain integrated guidance and control system, which provides the direction for the engineering implementation of integrated guidance and control law.
针对高超声速飞行器在下压攻击过程面临的强干扰、快参变与多约束问题,及其凸显的快机动与强稳定间的协同匹配需求,研究一种智能自适应制导控制一体化设计方法,突破现有方法适用包络较小的局限,提升我国未来高超声速飞行器的精确打击和适应能力。在飞行器数学建模基础上,给出其质心运动与绕心运动的耦合度衡量方法,进而构建面向控制的一体化设计模型。然后,研究基于有限时间收敛理论的级联控制,形成一体化制导控制初步方案,并分析其稳定性。为增强飞控系统对强干扰的鲁棒性,设计一种多变量干扰观测器,其输出将作为干扰补偿的依据。同时,考虑到包络大、参变快的特殊工况以及受复杂条件制约的实际问题,相继提出与之匹配的模糊参变策略与智能在线优化策略,以实现一体化制导控制的智能化。最后,基于Hammersley序列抽样技术研究一种高效的随机鲁棒分析方法,对制导控制参数不确定系统进行性能评估,为一体化制导控制算法的工程实现提供指导。
针对高超声速飞行器在下压攻击过程面临的强干扰、快参变与多约束问题,及其突显的快机动与强稳定间的协同匹配需求,本项目研究了一种自适应制导控制一体化设计方法,突破现有方法适用包络较小的局限,提升我国未来飞行器的精确打击和适应能力。首先,建立飞行器质心运动与绕心运动的全通道数学模型,并在数学建模基础上,给出其质心运动与绕心运动的耦合度衡量方法,进而构建面向控制的一体化设计模型。然后,研究基于动态面与非线性动态逆控制理论相结合的级联控制方法,形成一体化制导控制方案,并给出其稳定性分析。为增强飞控系统对强干扰的鲁棒性,设计一种多变量干扰观测器,其输出将作为干扰补偿的依据。同时,考虑到飞行包络大、参数变化快的实际问题,以及一体化制导控制系统智能化提升的需求,分别提出了模糊参变方法以及参数在线优化方法,为工程设计提供多种方法支撑。最后,通过计算机仿真与评估,得出本项目所研究方法相比传统分离设计方法的性能优势,并且基于Hammersley序列抽样技术研究了一种高效的随机鲁棒分析方法,通过算例分析出其相比传统蒙特卡洛评估方法的优势,从而对制导控制参数不确定系统的工程评估提供更为高效的分析手段。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
高超声速飞行器再入制导与姿态控制一体化设计研究
高超声速飞行器复杂约束多任务制导控制降阶一体化设计方法研究
高超声速飞行器制导控制一体化的显式约束精细抗干扰控制
高超声速飞行器攻击角度约束下有限时间收敛制导控制方法