Huntington's disease (HD) is a fatal neurodegenerative disease. Because of its unclear pathogenesis, there is no active drugs for changing the natural course of HD. The pathological findings indicate that redox imbalance plays a critical role in HD. Superoxide anion radical (O2˙¯) as important intracellular reactive oxygen species, regulate the redox balance and multiple signaling pathways by dynamic changing of O2˙¯ level in time and subcellular regions. Hence it will be conducive to solving puzzle of HD pathogenesis by exploring the temporal and spatial dynamic regulation of intracellular O2˙¯. However, due to special properties of O2˙¯including wide distribution, short life and high reactivity, it is difficult to achieve dynamic, reversible, and in situ detection of O2˙¯ fluctuations in subcellular by present methods. In order to solve the above problems, this project will develop novel two-photon fluorescent probes, which are precisely located in the cell membrane, cytoplasm and mitochondria respectively, as well as possessing highly selective, highly sensitive and dynamically reversible properties towards O2˙¯. With assistance of two-photon microscopy, the spatial and temporal distributions of O2˙¯ in mouse brain at subcellular level will be visualized during the development of the disease. Furthermore, O2˙¯mediated signaling pathway and HD molecular mechanism will be revealed for the early diagnosis and precise treatment of HD.
亨廷顿舞蹈症(HD)是一种致命的神经退行性疾病,因发病机制尚不明确,导致目前没有药物可以改变HD的病情恶化过程。研究表明,氧化还原失衡是HD最重要的致病因素。超氧阴离子自由基(O2˙¯)通过其浓度在亚细胞区域随时间的动态变化,调控氧化还原平衡和多种信号通路。因此,探究亚细胞器内O2˙¯的时空分布及信号通路,有助于解开HD的分子机制之谜。但是由于体内O2˙¯具有分布广、寿命短、反应活性高等特点,目前的检测手段难以实现动态、可逆检测亚细胞水平上O2˙¯的浓度变化。为解决上述问题,本项目拟发展三种分别精准定位于细胞膜、细胞质、线粒体,且能够高选择性、动态、可逆响应O2˙¯的新型双光子荧光探针,建立双光子荧光成像分析O2˙¯在不同细胞器内浓度水平变化的新方法,揭示HD疾病小鼠大脑内O2˙¯的三维时空分布及相关的信号通路,为HD疾病的早期诊断和精准治疗提供新策略。
生物体内超氧阴离子(O2˙¯)的时空变化与多种疾病的发生发展密切相关。在亚细胞水平及活体水平可视化O2˙¯对生物学和医学研究有重要意义。但由于缺少时空示踪细胞器内O2˙¯水平的工具,限制了对相关疾病分子机制的阐明。因此,我们设计合成了三种精准靶向线粒体或高尔基体检测O2˙¯的荧光探针,建立了活体、细胞及亚细胞器多尺度范围的实时示踪O2˙¯的分析方法。实现从百纳米到百微米、从二维到四维时空多级别多维度的成像分析。利用该分析方法,我们发现了机体应对可能致病的外界刺激时,高尔基体和线粒体内O2˙¯及其他活性小分子的浓度均随时间的进程而异常升高。O2˙¯浓度达到阈值后,可激活高尔基体和线粒体内的多条凋亡通路。该分析方法具有普适性,能够探查多种疾病与O2˙¯相关的分子机制,也为今后探寻疾病治疗靶点提供了可靠的方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
双吸离心泵压力脉动特性数值模拟及试验研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
亨廷顿蛋白参与DNA 损伤检查点信号通路的分子机理研究
变异亨廷顿病蛋白在神经网织中的凝聚及其毒性
靶向GPR52对亨廷顿病潜在治疗作用的研究
亨廷顿蛋白出核转运机制的研究