In order to meet the demand of measuring temperature and pressure in aero-engines under the harsh ultra-high temperature conditions at 1800℃, we propose an integrated multi-parameter sensing technology based on helical sapphire phase-shifted fiber gratings. In this project, we will first study the mechanism of refractive index modulation induced by femtosecond laser in sapphire optical fiber. We will fabricate an annular waveguide layer with low refractive index, which aims to achieve single-mode transmission in sapphire optical fiber. And then, we will study the fabrication process and mode coupling mechanism for single-mode helical sapphire fiber Bragg gratings. Subsequently, we will study the design, fabrication, and characterization of sapphire phase-shifted fiber gratings by using femtosecond laser spiral inscription method and micro channel machining. Researches will then be carried out on the high-reliability and low-loss connection technology for connecting the sapphire optical fiber and the traditional quartz-glass optical fiber, and an integrated package with high temperature resistance will be done for the sapphire fiber grating by using corundum casing. Finally, we will research the multi-parameter sensing techniques for detecting ultra-high temperature, high pressure, and vibration, and the wavelength demodulation for phase-shifted fiber grating. After finishing the project, we could expect novel sapphire fiber gratings samples, integrated multi-parameter sensors for ultra-high temperature, high pressure, and vibration, and the prototype of demodulation system. The project aims to realize a temperature measurement range of -50 to 1800℃, a temperature measurement accuracy of ±1%, a pressure measurement range of up to 5 MPa, a pressure measurement accuracy of ±2%, and a response time of 100 ms. The project has proposed a practical and promising high-temperature and multi-parameter sensing technology, and should be helpful to fill in the blank of this field, and could finally be used to meet the urgent demands of conditions monitoring in advanced aero-engines.
针对航空发动机中1800℃超高温环境下温度和压力测量的重大需求,在利用飞秒激光制备光纤光栅与微结构传感器的工作基础之上,本项目提出一种基于螺线型蓝宝石相移光纤光栅的多参量一体化传感技术,研究内容包括:飞秒激光在蓝宝石光纤中的折射率调制机理;单模螺线型蓝宝石光纤光栅的制备工艺及模式耦合机制;蓝宝石相移光纤光栅的设计、制备与测试;蓝宝石光纤光栅的高可靠低损耗连接及耐高温一体化封装;蓝宝石相移光纤光栅的温度、压力同时传感及解调技术。预期获得超高温、高压多参量一体化蓝宝石光纤光栅传感器样品、解调系统样机及配套软件1套,实现测温范围-50~1800℃,测温精度±1%,测压量程5MPa,测压精度±2%,温度、压力响应时间100ms。本项目的研究有利于填补该领域空白,最终实现一种新颖并具有实用化前景的超高温多参量传感技术,满足航空发动机状态监控的迫切需求。
针对高速飞行器、航空发动机燃烧室、核反应堆堆芯等重大工程装备需要实现1800℃超高温环境下温度压力实时原位测量的国家重大需求,本项目开展了蓝宝石光纤光栅多参量一体化传感技术的研究,主要研究成果包括:1)揭示了飞秒激光与光纤材料的相互作用机理,发现了飞秒激光脉冲在蓝宝石光纤中稳定激发成丝效应的机制;2)系统研究了飞秒激光直写光纤光栅技术,成功研制了高质量相移光纤光栅(反射率>99%、插损<0.3dB、相移峰带宽26pm);3)在国际上首次提出飞秒激光直写螺线型单模蓝宝石光纤光栅的新方法,解决了长期困扰相关领域的蓝宝石光纤多模工作问题,研制的单模蓝宝石光纤光栅具有极窄的反射峰(3dB带宽仅0.53nm);4)掌握了石英光纤金属涂敷和蓝宝石光纤陶瓷涂敷强化工艺,实现了传感器的高可靠性耐高温抗氧化封装;5)成功研制出蓝宝石光纤光栅超高温传感器样品(耐温高达1800℃,在1600℃下长时间工作20小时以上)和蓝宝石光纤高温多参量传感分析仪样机1台;6)成功研制出高温高压一体化光纤传感器样品,实现了800℃高温、10MPa高压的同时测量;7)项目研究成果已成功应用于航天科工三院、中国核动力研究设计院等单位,为解决高超声速飞行器热防护材料研制与试验、航空发动机尾喷口高温燃气流场分析、核反应堆堆芯状态监测和故障诊断等卡脖子难题提供了新的解决方案。项目共发表SCI国际期刊论文37篇、EI论文20篇;申请中国发明专利9项(授权4项)、申请/授权实用新型专利8项;获2022年广东省光学学会光学科技奖一等奖;培养博士后5人、博士生5人、硕士生6人;项目负责人入选国家优青(2022)、广东省青年拔尖人才(2020)、深圳市首届优青(2021)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
电沉积增材制造微镍柱的工艺研究
基于体素化图卷积网络的三维点云目标检测方法
基于新型解调方案的光纤光栅多参量传感网络
基于复合微结构光纤光栅的多维多参量传感机理及应用研究
基于超短光纤光栅阵列的分布式多参量传感机理与方法研究
双周期复合光纤光栅应变/温度双参量传感系统的研究