Microstructure optical fibers possess many distinguished characteristics compared with conventional optical fibers. The micro/nano-scale air holes in Microstructure optical fiber make it possible for the combination of optical fibers with functional materials. Filling material into the air holes of Microstructure optical fiber is an effective way to achieve a variety of sensors and resolve cross sensitivity. In this project, the mechanism and applications of multi-dimensional and multi-parameters sensor based on composite microstructured fiber gratings will be studied. Combined with the excellent characteristics of fiber gratings, the outstanding guiding properties of Microstructure optical fibers could be well synthesized with the unique physical characteristics of the optical, electrical, magnetic, and thermal materials infiltrated into Microstructure optical fibers. And thus several optical properties, including guiding mechanism, mode coupling, birefringence, and dispersion, could be controlled, which would be of great significance for the research on the light-matter interaction and development of fiber-based opto-electronic devices as well as sensing components. Composite microstructured fiber gratings, as the research object, its response characteristics at various external physical field effects would be studied. The applications of multi-dimensional and multi-parameters sensor based on composite microstructured fiber gratings would also be studied according to actual environment (with Temperature, Stress, Relative humidity, Magnetic field intensity, and electric field intensity). This research project has important scientific significance and practical value. And moreover, we hope to further promote the development of fiber optic sensing areas.
基于微结构光纤横向结构的可集成性,液体纳米功能材料重构的微结构光纤光栅以其新颖的理念和灵活的设计为新型传感器件的开发提供了一个更为广阔的研究平台。本项目拟对基于复合微结构光纤光栅的多维多参量传感机理及应用进行研究,结合光纤光栅的优良特性,将纳米功能材料的物理效应(如热光、磁光、电光等)与微结构光纤中的微纳结构结合起来,通过控制模式耦合和带隙调谐,达到操控光子在微纳尺度光波导中运动与传输的目的,从而实现新型的多维多参量传感器件。主要以纳米功能材料重构的复合微结构光纤光栅为研究对象,研究复合微结构光纤光栅在温度、应力、湿度、磁场、电场等外物理场作用下的响应特性,结合实际户外环境,最终实现复合微结构光纤光栅多维多参量传感从技术理论到实际应用的研究。本项目的研究具有重要的科学意义和实用价值,我们希望通过本项目的开展进一步推动光纤传感的研究。
本项目将纳米功能材料的物理效应与微结构光纤光栅的微纳结构有机地结合起来,控制光子在波导中的运动,从而实现全新的光纤传感器件。在理论上,①采用有限元分析软件(COMSOL)和光束传播法分析软件(Rsoft软件中的Beamprop模块)分别对拉锥光纤、长周期光纤光栅,单模-多模-单模的光纤结构的光纤模场分布和光学传输特性进行了分析,理论模拟出其模场分布。②利用解析和数值计算的方法研究了单膜MoS2 纳米振子的非线性光学特性,对的半导体量子点和光子晶体纳米腔的耦合系统进行双稳态四波混频响应的理论研究,研究了激子和声子的相互作用以及激子和等离子体的相互作用对金属纳米颗粒-单层MoS2纳米谐振子杂化系统中的双稳态四波混合信号的影响,提出了一种基于在生物半导体量子点-DNA耦联纳米杂化中的光学双稳定性的生物传感器方案,为设计新型的生物光学传感器开辟了新的途径。实验上,①采用毛细玻璃管将长周期光纤光栅或者拉锥光纤封装到纳米材料拓扑绝缘体Bi2Se3溶液的密闭环境中,测量得到长周期光纤光栅或者拉锥光纤在温度场以及折射率场同时作用下的响应特性;②探索了长周期光纤光栅、拉锥光纤、腐蚀光纤等不同类型的光纤结构在温度场,外界折射率场作用下的响应机制,实现了复合微结构光纤光栅对温度以及葡萄糖浓度的同时测量。本项目的研究工作为研制新型光纤传感器件的新技术、新结构、新应用提供新的思路和理论依据,为其在光通信和光传感等领域的进一步发展提供更为广阔的创新空间。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于倾斜光栅的多维微结构光纤光子器件机理及应用研究
基于新型解调方案的光纤光栅多参量传感网络
基于复合微结构光纤光栅的光子器件机理及应用研究
基于超短光纤光栅阵列的分布式多参量传感机理与方法研究