与拟三角Hopf代数相关的一些课题

基本信息
批准号:19571022
项目类别:面上项目
资助金额:4.60
负责人:卢涤明
学科分类:
依托单位:浙江大学
批准年份:1995
结题年份:1998
起止时间:1996-01-01 - 1998-12-31
项目状态: 已结题
项目参与者:姜豪
关键词:
量子群Baxter方程braidedmonoidal范
结项摘要

本课题主要研究拟三角Hopf代数的结构和理论以及杨振宁Baxter方程、braided monoidal范畴等与其相关的若干内容。建立了亲的braided monoidal范畴H(mA),并由此获得了一类杨振宁Baxter新解;构造了braided monoidal范畴H(mod)和(H)Comod间的保持张量积的函子,为研究这两个有张量运算的范畴间的对偶性质,进而对拟三角Hopf代数和braided Hopf代数的对偶性质和结构的研究提供了一种途径;证明了拟三角Hopf代数与其对偶现象的若干性质,证明了每个非退化有限维braided双代数必有antipode;引入了量子行列式的平方根概念,并以此建立了量子群Uq(2)和量子群SqU(2)的余表示之间的分解定理,以及它们的余代数同态的分解定理;用Tannaka 范畴方法,对一些非线性方程给出了代数求解的广泛构造。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

汽车侧倾运动安全主动悬架LQG控制器设计方法

汽车侧倾运动安全主动悬架LQG控制器设计方法

DOI:
发表时间:2017
2

基于粒子群优化算法的级联喇曼光纤放大器

基于粒子群优化算法的级联喇曼光纤放大器

DOI:10.7510/jgjs.issn.1001-3806.2020.06.018
发表时间:2020
3

一类随机泛函微分方程带随机步长的EM逼近的渐近稳定

一类随机泛函微分方程带随机步长的EM逼近的渐近稳定

DOI:10.21656/1000-0887.390057
发表时间:2019
4

基于脉冲微分方程的COVID-19境外输入型病例对我国疫情防控影响的分析

基于脉冲微分方程的COVID-19境外输入型病例对我国疫情防控影响的分析

DOI:10.1360/SSM-2020-0072
发表时间:2021
5

长三角城市群碳排放、能源消费与经济增长的互动关系——基于面板联立方程模型的实证

长三角城市群碳排放、能源消费与经济增长的互动关系——基于面板联立方程模型的实证

DOI:
发表时间:2016

卢涤明的其他基金

批准号:10971188
批准年份:2009
资助金额:25.00
项目类别:面上项目
批准号:10571152
批准年份:2005
资助金额:20.00
项目类别:面上项目
批准号:11671351
批准年份:2016
资助金额:48.00
项目类别:面上项目
批准号:11271319
批准年份:2012
资助金额:57.00
项目类别:面上项目

相似国自然基金

1

有限点张量范畴与拟Hopf代数

批准号:11701468
批准年份:2017
负责人:杨毓萍
学科分类:A0104
资助金额:21.00
项目类别:青年科学基金项目
2

塔代数的表示理论及相关Hopf代数

批准号:11701339
批准年份:2017
负责人:李慧兰
学科分类:A0106
资助金额:23.00
项目类别:青年科学基金项目
3

李代数的结构与表示及相关课题

批准号:10271076
批准年份:2002
负责人:姜翠波
学科分类:A0105
资助金额:20.00
项目类别:面上项目
4

霍尔代数及代数表示论及相关课题

批准号:19271027
批准年份:1992
负责人:郭晋云
学科分类:A0104
资助金额:1.50
项目类别:面上项目