More and more modeling and differential equations of fractional order have been widely used in applications of many natural science, social science and engineering and have been researched comprehensively and thoroughly. There have been much more researches on fractional differential equations of constant order and coefficients, but little on fractional equations of variable coefficients, whose conclusions are intrinsically different from ones of constant-coefficient fractional differential equations, such as lack of global ellipticalness, so that it is very difficult to design convergent numerical schemes and to establish wellposedness of problems. .Recently, distributed order and variable order fractional differential equations are proposed and studied by more and more researchers, which could be used to description of much more complicated anomalous diffusion processes so as to have more general applicability. Complexity of distributed order and variable order fractional differential operators give a new challenge to numerical algorithms and their fast solving methods and convergence analysis..Research content of the project is as follows: .(1) Well-posedness of boundary value problems or initial-boundary value problems of steady or time-dependent fractional partial differential equations of variable-coefficients, such as choices of function spaces and variational formulations. Numerical algorithms and their convergence analysis, such as fast solving methods and algorithms of higher accuracy without assumption of higher regularity. .(2) Fast numerical algorithms of discrete systems of distributed order and variable order fractional differential equations only with memory storage and computational work of O(N) and O(N log N). .These issues have basic fundamental significance.
分数阶微分方程在自然科学、社会科学和工程技术众多领域获得越来越多的实际应用和理论研究。常系数分数阶问题的数学理论和数值方法研究已相当丰富,变系数空间分数阶微分方程的数学理论和数值方法研究极少,其适定性结果与常系数分数阶问题有本质不同,如整体椭圆性缺失,使得其问题的适定性以及基于其上的数值算法的建立和分析遇到根本性障碍。分布式和变阶数分数阶模型是新兴的研究课题,能够用来刻画更复杂的反常扩散过程,因而具有更加深刻的应用性。随之而来对相应数值算法的设计、收敛性分析和快速算法提出了新的挑战。.本项目研究内容:.(1)稳态或时间依赖变系数分数阶偏微分方程的边值问题或初边值问题的适定性; 相应的数值方法及收敛性分析理论,如快速算法、无高阶正则性条件的高精度算法等。.(2)探寻分布式和变阶数分数阶方程导出的离散系统的可快速求解的结构,设计出快速数值算法。.上述研究内容具有基础性科学意义。
本项目主要研究内容包括:(1)分布式、变阶数和变系数分数阶偏微分方程的数学理论和可计算建模;(2)分布式、变阶数和变系数分数阶偏微分方程的快速算法;(3)相关问题的数值方法和分析。.研究工作按照计划进行,完成了预期研究目标。取得了多项创新性成果,包括三个方面:.I.分布式、变阶数和变系数分数阶偏微分方程的数学理论。.(1)变阶时间分数阶扩散方程的适定性和正则性。.(2)变阶时间分数阶扩散方程反问题解的唯一性。.(3)一维单边分数阶微分方程的Neumann边值问题的解的存在性和适定性。.(4)一维变系数双边分数阶微分方程的齐次边值问题解的存在性和适定性。.(5)空-时分数阶相场模型。.(6)具有形状记忆聚合物的变阶分数阶微分方程模型。.(7)纳米孔隙材料反常扩散输运的分数阶偏微分方程建模。.上述关于变阶数分数阶偏微分方程的正问题和反问题的适定性理论是国际上首次研究结果。.II.分布式、变阶数和变系数分数阶偏微分方程和非局部模型快速算法.(8)分数阶扩散方程的预处理算法。.(9)单边分数阶扩散方程高精度间接有限元方法。.(10)一般凸区域的分数阶偏微分方程的快速算法。.(11)空间分数阶扩散方程的四阶差分格式。.(12)时间分数阶偏微分方程的等几何分析。.(13)分布式分数阶问题的快速算法。.(14)变系数非局部扩散方程的快速算法。.(15)近场动力学的键式模型快速数值格式。 .(16)空时分数阶偏微分方程的分而治之快速差分方法。 .上述算法的共同点是所需的内存储量和计算工作量仅分别为未知量数目N的同级量级和NlogN的量级,实现了三维问题的可计算分数阶建模。.III. 相关问题的数值方法.(17)抛物型偏微分方程的基于重叠区域分解的非迭代并行Schwarz算法。.(18)抛物型偏微分方程约束的最优控制问题的并行区域分解有限元方法。.(19)形状优化问题的的水平集方法。.(20)形状优化问题体积型积分表示算法。.(21)线性抛物型方程的等几何-POD方法。.(22)声波方程的等几何-POD数值方法。.(23)流-固耦合与流-流耦合界面问题的数值方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
基于核函数求解变分数阶和分布阶扩散方程
分数阶Choquard方程的变分方法研究
分数阶Choquard方程的变分方法研究
变阶分数阶微分方程相关问题的定性研究