According to the current status of continuum robot and the disadvantages of traditional colonoscope: lack of active bending ability and causing colon tissue injury, the research of this project focuses on the non-invasive intervention mechanism and control of continuum colonoscopic robot based on force sensing. Firstly, with the analysis result of the nonlinear constraints of human colon and the bionic principle of continuum robot, the continuum structure of colonoscopic robot is optimized. The kinematics model of robot is built on the goal of high real-time performance. Secondly, the biomechanical property of colon tissue is studied. The multidimensional biomechanical model, including pressure-tissue deformation, pressure-mucosa breakage and pressure-changes of blood flow velocity, are constructed. Then, the non-invasive intervention mechanism is researched and the evaluation basis and criterion are established. Thirdly, the data of pressure sensors array, which are integrated on the surface of colonoscopic robot, is collected. The force sensing of colon tract is realized by processing and identifying of the feedback of sensors array. Aimed at the continuum structure of colonoscopic robot, a compliance control strategy based on the biomechanical property of colon tissue is proposed. Finally, the colonoscopic robot system is designed and the experiment platform is constructed. The experiments with simulated colon and living animal are performed to validate the design and theory analysis. This research will lay a new foundation and method for the diagnosis and treatment of colon diseases, and have important theoretical and practical significance for the development of diagnosis and treatment technology.
针对传统结肠镜主动弯曲能力不足、易损伤肠道组织的缺点,结合连续体型机器人的研究现状,本项目对连续体型结肠镜机器人无创介入机理与控制展开研究。首先,基于肠腔非线性约束和连续体型机器人的仿生原理对结肠镜机器人的连续体型结构进行优化,以高实时性为目标构建其运动学映射模型。然后,研究肠腔组织生物力学特性,建立综合压力-组织变形、压力-黏膜破损和压力-血流速度变化的多维生物力学模型;在此基础上,研究结肠镜机器人无创介入机理,构建无创评价依据。其次,根据机器人表面传感器阵列的反馈信息,基于信息融合与辨识方法实现对肠腔环境的力感知;提出基于肠腔环境力感知的结肠镜机器人柔顺控制策略。最后,研制结肠镜机器人系统,搭建实验平台,开展模拟结肠实验和活体动物实验,验证设计与理论分析的有效性。本项目的研究成果将为结肠疾病诊疗提供新的研究基础与方法,对促进我国结肠疾病诊疗技术的发展具有重要的理论和现实意义。
针对传统结肠内窥镜的缺点,本项目对连续体型结肠镜机器人无创介入机理与控制展开研究。在对人体结肠的解剖学特征和连续体型机器人的仿生原理进行分析的基础上,设计了具有多关节段连续体型结构的结肠内窥镜机器人。机器人分为5段,每段各具有2个自由度,通过绳索驱动方式实现对各关节段的运动控制。提出了一种高效并具有良好实时性的连续体型机器人运动学分析方法,利用该分析方法对内窥镜机器人关节段的驱动空间、关节空间以及操作空间三者的位置映射关系进行了分析。研究了人体结肠组织的生物力学特性,确立了结肠内窥镜机器人与结肠壁接触压力的安全阈值,分析了机器人肠腔环境的无创介入机理,为结肠内窥镜机器人对结肠肠腔环境的柔顺控制研究提供了依据。设计了用于测量机器人关节段与肠道壁接触力的压力传感器并进行了集成。在此基础上,提出了一种基于力感知信息的内窥镜机器人柔顺控制策略。搭建了结肠内窥镜机器人实验系统,开展模拟结肠实验,验证机器人及柔顺控制策略在肠腔非结构环境中的有效性。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于SSVEP 直接脑控机器人方向和速度研究
基于细粒度词表示的命名实体识别研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
穿戴式精确定位介入手术机器人的力觉感知与导丝操控机理研究
冠状动脉慢性完全闭塞介入手术机器人导丝的精确力感知机理分析与力传感集成设计
面向微创手术的力感知空间并联RCM机构创成及其柔顺控制研究
基于非均匀切口连续体的单孔微创手术机器人机构综合与控制方法研究