We plan to study the asymptotic behavior, as the discount factor goes to 0, of the viscosity solutions of the discounted equations of time-periodic Hamilton-Jacobi equation and weakly coupled Hamitlon-Jacobi equations. We'll study it with PDE method and variational method.under more generally conditions (Compared to superlinearity condition under Tonelli frame, we'll do it under coercivity condition). We'll probe.the dynamical property of the viscosity solutions in this process and discuss the connections and differences between the Mather measure under the Tonelli conditions and the measure we'll construct under more generally conditions.
我们拟在更一般的条件(相对于Tonelli条件中的超线性增长性,我们在强制性条件)下,结合PDE方法和变分法,研究时间周期Hamilton-Jacobi方程及弱耦合 Hamilton-Jacobi方程组相应的discounted方程的粘性解在discount因子趋于0时的收敛情形。研究这个过程中粘性解所反映的动力学性质,以及在此种条件下建立起来的测度与Tonelli条件下Mather测度的联系与区别。
{{i.achievement_title}}
数据更新时间:2023-05-31
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
地震作用下岩羊村滑坡稳定性与失稳机制研究
卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比
不确定失效阈值影响下考虑设备剩余寿命预测信息的最优替换策略
异质环境中西尼罗河病毒稳态问题解的存在唯一性
Mather理论与Hamilton-Jacobi方程的粘性解
弱KAM理论及Hamilton-Jacobi方程的粘性解
关于接触Hamilton-Jacobi方程粘性解的奇性传播
Hamilton-Jacobi方程粘性解奇点动力学及其应用