Strict requirements for electromechanical servo system are proposed in hypersonic flight vehicle, including high dynamic response, high temperature resistance, small lightweight and high rigidity. Affected by manufacturing process, installation and debugging errors and material, the actuator contains nonlinear factors of friction, clearance and elastic deformation. In flight conditions with high march number, the hinge moment and inertia moment of the rudder caused by aerodynamic force will both give rise to strong load disturbance, and by this time the influence of nonlinear factors on system performance is more prominent. The main research contents include: (1) electromechanical servo structural dynamics model is established, and modal harmonic response of the actuator is analyzed. (2) theoretical model of the actuator is carried out by multi-body dynamics analytical method; the analysis of kinematics and dynamics is conducted; accurate model of nonlinear factors is built; mechanisms and rules for the phenomenon of variable-structure, jump amplitude,limit cycle oscillation and self-excited vibration are revealed; and engineering design problems of nonlinear dynamics behavior for the actuator and similar structures are resolved. (3) the rigid coupling electromechanical control model is established based on ADAMS and MATLAB tools; uncertain parameters in the system are estimated using complex self-adaptive rule; and compound self-adaptive non-singular terminal sliding-mode control is designed to improve tracking accuracy and robustness of servo system, and its stability is proved using Lyapunov principle.
高超声速飞行器对机电伺服系统提出高动态响应、耐高温、小型轻质化、高刚度等严格要求,受制造工艺、安装调试误差、材料因素等影响,作动器中含有摩擦、间隙、弹性变形等非线性因素。高马赫数飞行条件下,气动力作用引起的铰链力矩和翼面的惯性力矩均造成强烈的负载扰动,此时非线性因素对系统性能影响更加突出。主要研究内容包括:(1)建立作动器结构动力学模型,研究作动器模态和谐响应分析。(2)采用多体动力学分析方法对作动器进行理论建模,进行运动学和动力学分析,构建非线性精确模型,揭示结构变模态、振幅跳跃、极限环振荡、自激振动等现象发生的机理和规律,解决作动器及类似结构非线性动力学行为的工程设计分析难题。(3)基于ADAMS和MATLAB工具建立刚柔耦合机电控制模型,采用复合自适应律对系统中的不确定参数进行估计, 设计非奇异终端滑模控制器来提高系统跟踪精度和鲁棒性,并运用Lyapunov稳定性原理证明其稳定性。
高超声速飞行器对机电伺服系统提出高动态响应、耐高温、小型轻质化、高刚度等严格要求,受制造工艺、安装调试误差、材料因素等影响,作动器中含有摩擦、间隙、弹性变形等非线性因素。高马赫数飞行条件下,气动力作用引起的铰链力矩和翼面的惯性力矩均造成强烈的负载扰动,此时非线性因素对系统性能影响更加突出。主要研究成果包括:(1)建立了作动器结构动力学模型,掌握了作动器模态和谐响应分析方法。(2)基于多体动力学分析方法对电力作动器进行了理论建模,构建摩擦/间隙/刚度特性的非线性精确模型,揭示结构变模态、振幅跳跃、极限环振荡、自激振动等现象发生的机理和规律,解决作动器及类似结构非线性动力学行为的工程设计分析难题。(3)基于ADAMS和MATLAB工具建立刚柔耦合机电控制模型,引入加速度控制策略,提出了基于相位稳定与线性自抗扰控制相结合的控制方法,解决了高超声速飞行器跨声速段气动引起的舵面颤振问题,并通过高超飞行试验验证。(4)引入前馈微分理论和设计非奇异终端滑模控制器来提高系统跟踪精度和鲁棒性,并运用Lyapunov稳定性原理证明其稳定性。(5)针对高超飞行器空间结构紧凑问题,提出了一种高压高功率密度高效驱动电路设计方法。(6)发表SCI论文8篇,EI论文5篇,已授权发明专利4项,国防技术发明奖二等奖一项(2019年)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
粗颗粒土的静止土压力系数非线性分析与计算方法
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
内点最大化与冗余点控制的小型无人机遥感图像配准
机翼共形承载阵列天线机电耦合的动态建模及机理研究
非正交多轴机电伺服系统空间轮廓误差形成机理及控制策略
机电系统混合故障行为建模及服役寿命非线性预测方法研究
微机电系统动态建模与若干基础问题研究