Proliferative diabetic retinopathy, characterized with hypoxia induced angiogenesis and neuropathy in retina, is one of the major ophthalmopathy that severely affects visual health in adults. Establishment of a reliable pathological model is of great significance for studying human diseases and predicting drug responses. Organs-on-chip is a promising alternative to animal testing in recent years, however, current in vitro experimental model are limited in mimic proliferative diabetic retinopathy. On the basis of our previous studies in celluar and molecular analysis under well-controlled microenvironments based on microfluidic method, in this project, we proposed an organotypic eye-on-a-chip model to mimic the vessel-retina complex in vitro. Localized hypoxia stimulation can be performed by establishing an oxygen concentration gradient, which further inducing the key pathologic behaviors of diabetic retinopathy, including neuronal injury, angiogenesis and barrier dysfunction. The developed disease model is further verified by cellular imaging, molecular analysis and drug treatment. It is believed that this novel ocular disease model based on microfluidic methods can be used to aid in understanding the pathological mechanism, as well as the development of in vitro drug evaluation in conjunction with animal models.
缺氧诱导的病理性视网膜血管新生和神经退变,是增殖型糖尿病视网膜病变的主要特征,严重影响人类视力健康。建立可靠病理模型对研究人体疾病和预测药物反应具有重要意义,器官芯片是近年来提出的有望替代动物测试的新技术,但目前缺乏可模拟糖尿病视网膜病变的芯片研究模型。申请人前期工作将微流控芯片微环境操控与细胞成像相结合,在气体控制、浓度梯度形成、三维细胞网络构建及生物过程监测方面,开展了系列探索研究。本项目拟基于前期实验结果与技术基础,构建芯片上的三维视网膜组织,通过氧浓度梯度模拟局部缺氧,诱导神经组织损伤、血管新生以及屏障功能障碍,建立具有关键病理表型的视网膜病变模型。通过细胞成像、分子检测和外泌体内涵物分析等手段,验证疾病相关分子通路,并用于相关途径的靶点药物评估。项目的实施可扩展器官芯片在眼组织及眼疾病中的新应用,并为揭示疾病机理和优化给药策略提供新的实验平台。
缺氧诱导的病理性视网膜血管新生和神经退变,是增殖型糖尿病视网膜病变的主要特征,严重影响人类视力健康。建立可靠的、标准化的疾病模型,以及发展高效、非侵入式的分析方法,研究病理微环境下的细胞与分子机理,对帮助识别和治疗疾病意义重大。本项目从构建微芯片、探索细胞损伤机制及监测分子变化方面展开研究。基于微流控与微纳米材料方法:构建了适于细胞体外共培养、介导胞间通讯以及微环境(低氧、药物)可控的微流控芯片系统;针对微量复杂样本发展了外泌体快速纯化新方法,可在数分钟至半小时内实现微升至毫升级样本的高效处理,并集成高灵敏外泌体定量检测功能;结合细胞系及临床样本,多维度探索了眼底血管与神经病变的分子(核酸、蛋白质和代谢小分子)变化规律及旁分泌机制。该项目对研究细胞间通讯、理解眼底疾病机制,以及挖掘潜在标志物具有重要科学意义,在临床早期诊断、预后及治疗评估等场景具有潜在应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
视网膜母细胞瘤的治疗研究进展
用于ADME研究的集成化器官微流控芯片
基于器官芯片技术的抗抑郁药心肌毒性评价新方法研究
基于肠-心多器官芯片的药物心肌毒性评价新方法研究
器官芯片技术仿生构建三维动态血脑屏障新体系、新方法研究