As one of the few exactly solvable models in theoretical physics, the Ising model on Husimi lattice is featured by its impressive advantages and successful applications in various thermodynamic and statistical mechanics researches, which is however challenged by the limitation of its homogeneous structure and the subsequent narrow utilization. Therefore, we proposed this project: based on our cutting-edge progress in this field. The conventional homogeneous structure of single-unit Husimi lattice is to be extended to the random inhomogeneous lattices with variable units and random structures, while the methodology still keeps the feature of exact calculation. The original scientific novelty of this project is expected to enhance the application of the method in the field of inhomogeneous system, the cross-dimensional range on the surface/interface, and various fields in materials science and applied physics..The research scheme focuses on the four designs of inhomogeneous Husimi lattice, and the development of corresponding exact recursive calculations based on the partial partition function algorithm, which was developed by us from the Bethe Cavity method. The application of our method in various physical problems, especially the cross-dimensional thermodynamics and phase transition, is also planned to be investigated. .As featured with an excellent background, decent fundamental research preparation, and sufficient demonstration on the feasibility by the previous results, the project is expected to fill the blank in domestic research in this field, and to keep us competitive in the international forefront with its significant scientific and social merits.
伏见格上的易辛模型是理论物理中少见的几种可精确求解的方法之一,在诸多热力学计算问题上有着显著的优势。但其均相结构的单一性导致该方法应用范围狭窄。为此我们提出本课题—非均相随机伏见格上的易辛模型在跨维区域中的热力学行为及相变,将传统的均相单元构造的伏见格拓展为不同单元和结构组合的非均相随机构造,并保留精确计算的特性,提升该方法的应用价值,可用于非均相系统、表面/界面的跨维区域研究、以及诸多材料系统或应用物理问题中,是领域内独创的研究方向。.项目主要研究内容和方案为构建四种思路的非均相伏见格,以前期开发的部分配分方程方法为基础,构建出在非均相上依然有效的精确迭代算法,并将该模型应用在一系列应用物理和材料研究中,尤其是跨维区域的热力学行为和相变。.本项目研究基础良好,工作积累充分,方案可行性论证充分,其立项将填补国内研究空白,并保持在国际上的领域前沿竞争力,有着重要的科学意义和社会价值。
伏见格上的易辛模型是理论物理中少见的几种可精确求解的方法之一,在诸多热力学计算问题上有着显著的优势。但其均相结构的单一性导致该方法应用范围狭窄。为此我们提出本课题—非均相随机伏见格上的易辛模型在跨维区域中的热力学行为及相变,将传统的均相单元构造的伏见格拓展为不同单元和结构组合的非均相随机构造,并保留精确计算的特性,提升该方法的应用价值,可用于非均相系统、表面/界面的跨维区域研究、以及诸多材料系统或应用物理问题中,是领域内独创的研究方向。..经过三年的努力,我们开发出了一系列非均相伏见格模型和对应的计算方法、运算软件,建立了一套通用的大范围本地结构单元方案的非均相伏见格建模和运算方法。并运用这一方法论时间考察了(1)2-3D跨维格;(2)随机多枝化正方格;(3)描述表面/界面行为的一维与二维非均相伏见格;(4)奇数格点格子自我干扰构型;(5)可变单元的菱形循环格;(6)基于循环格方法的生物大分子DNA/RNA的研究。已发表 SCI论文3 篇,已投稿在审论文3篇,工作论文4篇,预印本数据库公开论文1篇。项目实施过程中,协助培养研究生2名,作为毕业设计导师指导本科生1名。..本项目研究进展符合计划进度,基本完成预计目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
跨社交网络用户对齐技术综述
粗颗粒土的静止土压力系数非线性分析与计算方法
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
随机伊辛模型的相变研究
格点模型相变及临界行为的解析研究
有机胺在大气颗粒物及模型颗粒物上的摄取及其非均相氧化
格上非可加格值测度